The installation position and installation method of the ultrasonic flowmeter.
Installation location
Selecting the installation pipe segment has a great influence on the test accuracy. The selected pipe segment should avoid the interference and eddy current, which have great influence on the measurement accuracy. Generally, the pipe segment should meet the following conditions:
1. Avoid installing the machine in the pump, high-power radio, frequency conversion, that is, where there is strong magnetic field and vibration interference;
2. Select the pipe section where the pipe should be uniform and dense, and it is easy to transmit ultrasonic waves;
3, to have a long straight pipe section, the upstream straight pipe section of the installation point must be greater than 10D (Note: D = diameter), downstream is greater than 5D;
4, the installation point upstream distance pump should have a distance of 30D;
5. The fluid should be filled with pipes;
6. There should be enough space around the pipeline to facilitate the operation of the on-site personnel. The underground pipeline needs to be a test well. The test well is as follows:
Installation method
Ultrasonic flowmeters generally have two types of probe installation methods, namely Z method and V method.
However, when D < 200mm and the site condition is one of the following conditions, it can also be installed by the Z method:
1. When the measured fluid has high turbidity, when the V method is used to measure the signal or the signal is weak;
2. When the inner wall of the pipe is lined;
3. When the service life of the pipeline is too long and the inner wall is fouled seriously;
For those with better pipeline conditions, even if D is slightly larger than 200mm, in order to improve the measurement accuracy, the V method can be used for installation.
Sensor check
Test equipment: one 500MΩ insulation resistance tester, one multimeter.
Test steps:
(1) When the pipeline is filled with medium, measure the resistance between terminals A, B and C with a multimeter. The resistance between A-C and B-C should be equal. If the difference is more than 1 time, there may be leakage of the electrode, condensation on the outer wall of the measuring tube or the junction box.
(2) In the case of lining drying, measure the insulation resistance between A-C and B-C with MΩ meter (should be greater than 200MΩ). Then use a multimeter to measure the resistance of the two electrodes in terminals A and B and the measuring tube (should be in short-circuit communication). If the insulation resistance is small, indicating that the electrode is leaking, the entire flowmeter should be returned to the factory for repair. If the insulation is reduced but there is still more than 50 MΩ and the inspection result of step (1) is normal, the outer wall of the measuring tube may be damp, and the inside of the outer casing may be dried by a hot air blower.
(3) Use a multimeter to measure the resistance between X and Y. If it exceeds 200 Ω, the excitation coil and its lead wire may be open or poorly connected. Remove the terminal block check.
(4) Check the insulation resistance between X, Y and C, which should be above 200 MΩ. If it is lowered, dry the inside of the casing with hot air. In actual operation, the decrease in coil insulation will result in increased measurement error and unstable instrument output signal.
(5) If it is determined that the sensor is faulty, please contact the manufacturer of the electromagnetic flowmeter. The general site cannot be solved and needs to be repaired by the manufacturer.
Turbine flow meter applications
Turbine flow meters are widely used in the following measurement objects: petroleum, organic liquids, inorganic liquids, liquefied gases, natural gas, gas and cryogenic fluids. In the transshipment and gathering stations of foreign liquefied petroleum gas, refined oil and light crude oil, the first and last stations of large crude oil transmission pipelines use it for trade settlement. In Europe and the United States, the turbine flowmeter is the natural gas meter next to the orifice flowmeter. In the Netherlands alone, more than 2,600 gas turbine flowmeters of various sizes and pressures from 0.8 MPa to 6.5 MPa are used on the natural gas pipeline. Has become an excellent natural gas flow meter. Although the excellent metering characteristics of the turbine flow meter are favored by people, the impression is that the moving parts are short in use time, and they are inevitable in the selection. After people's unremitting efforts, it should be said that the situation has changed a lot. As the most versatile flowmeter, the turbine flowmeter has been developed into a multi-variety, full-series, multi-size mass production scale.