The V-cone flowmeter is a new generation of differential pressure flow measuring instrument. In practical use, many factors have a great influence on the measurement accuracy of the differential pressure flowmeter, which increases the measurement error and reduces the accuracy.
The specific performance is as follows:
1) the design parameters are inconsistent with the working parameters;
2) there is no temperature compensation or compensation is incorrect;
3) the length of the upper and lower straight pipes is insufficient;
4) the cones and pipes are not concentric;
5) the pressure pipes Blockage, etc.
After on-site inspection, the shortage of straight pipe sections, disagreement, and blockage of the pressure guiding pipe can be ruled out.
The differential pressure transmitter is removed for verification, the transmitter is qualified, and the error is within the allowable range.
The technicians recalled the trend record of DCS preservation, and looked at the steam temperature and pressure recording curve. The temperature was between 120 °C and 150 °C, the pressure was between 0.3MPa and 0.6MPa, and the measured temperature and pressure deviated from the design value. The design parameter was temperature. 193 ° C, pressure 1.13 MPa). At the same time, the DCS configuration was viewed and it was found that there was no temperature and pressure compensation for the steam flow in the configuration.
However, since the volume of condensed water in the wet steam is relatively small, the flow of excess water in the ascending pipe often appears as an annular flow structure, but when the amount of water is particularly large, it also appears as a ring with fibers. Flow structure. Among them, the fibrous fluid is actually a condensed water. Flow in a vertically descending pipe: In a vertically descending pipe, the structure of the gas-liquid two-phase flow is similar to that of a vertically ascending flow, but differs not only in the opposite flow direction but also in the case of the same average flow velocity. The flow rate of the liquid in the vertical drop pipe is much faster than the flow rate of the liquid in the vertical rise pipe.
Second, steam vortex flowmeter measurement considerations
Vortex flowmeters measure steam. Accurately arrange the steam traps accurately: People have long discovered that when the steam has more water, the vortex flowmeter will have a "leakage pulse" phenomenon, that is, in the case of a stable steam flow rate, the vortex flow It should have a stable pulse output proportional to the flow rate. But sometimes it is found that the output pulse of the meter is inexplicably less. The distribution of the output pulse recorded on the two-dimensional coordinates can also be clearly seen. The pulse that should be approximately evenly distributed is one less at a place. Pulses, in severe cases, are a lot less pulses, and in the worst case, there are no pulses at all. This may be related to the formation of a vortex column by impinging on a large volume of droplets having a non-uniform distribution on the vortex generator.
Turbine flow meter applications
Turbine flow meters are widely used in the following measurement objects: petroleum, organic liquids, inorganic liquids, liquefied gases, natural gas, gas and cryogenic fluids. In the transshipment and gathering stations of foreign liquefied petroleum gas, refined oil and light crude oil, the first and last stations of large crude oil transmission pipelines use it for trade settlement. In Europe and the United States, the turbine flowmeter is the natural gas meter next to the orifice flowmeter. In the Netherlands alone, more than 2,600 gas turbine flowmeters of various sizes and pressures from 0.8 MPa to 6.5 MPa are used on the natural gas pipeline. Has become an excellent natural gas flow meter. Although the excellent metering characteristics of the turbine flow meter are favored by people, the impression is that the moving parts are short in use time, and they are inevitable in the selection. After people's unremitting efforts, it should be said that the situation has changed a lot. As the most versatile flowmeter, the turbine flowmeter has been developed into a multi-variety, full-series, multi-size mass production scale.