Mass flow meter
Since the volume of the fluid is affected by parameters such as temperature and pressure, it is necessary to give the parameters of the medium when the flow rate is expressed by the volume flow. In the case of changing media parameters, it is often difficult to achieve this requirement, resulting in distortion of the meter display value. Therefore, mass flow meters have been widely used and valued. Mass flow meters are available in both direct and indirect versions. Direct mass flow meters are measured using principles directly related to mass flow. Currently used mass flow meters such as calorimetric, angular momentum, vibratory gyro, Magnus effect and Coriolis force. The indirect mass flow meter is obtained by directly multiplying the density meter by the volumetric flow rate to obtain the mass flow rate.
In modern industrial production, the operating parameters such as temperature and pressure of the flowing working fluid are continuously improved. In the case of high temperature and high pressure, due to the material and structure, the application of the direct mass flowmeter is difficult, and the indirect quality is encountered. Flowmeters are often not suitable for practical applications because they are limited by the range of humidity and pressure. Therefore, a temperature-pressure-compensated mass flowmeter is widely used in industrial production. It can be regarded as an indirect mass flow meter. Instead of using a density meter, it uses the relationship between temperature, pressure and density. It uses a temperature and pressure signal to calculate the density signal by function, and multiplies it by the volume flow. Mass Flow. At present, temperature and pressure-compensated mass flowmeters have been put into practical use. However, when the measured medium parameters vary widely or rapidly, it will be difficult or impossible to correctly compensate, so further study the mass flow rate applicable in actual production. Meters and densitometers are still a topic.
Chen's above-mentioned common structural principle of flowmeters is much better than various types of flowmeters, such as various helium flowmeters and trough flowmeters for open channel flow measurement; flowmeters suitable for large-caliber flow measurement; measuring laminar flow Laminar flowmeter; related flowmeter for two-phase flow measurement; and laser method, nuclear magnetic resonance flowmeter and various tracer methods, dilution method flow measurement, etc. With the development of technology and practical application needs, the new flowmeter will continue to emerge more types of flowmeters.
Compressed air flowmeter installation requirements
Keywords: compressed air flow meter, compressed air vortex flowmeter, air flowmeter
First, the compressed air vortex flowmeter installation requirements
1. The upstream of the compressed air vortex flowmeter should avoid installing the regulating valve or the semi-opening valve. The regulating valve or the semi-opening valve is installed after the downstream 8DN of the sensor.
2. The straight pipe section where the flowmeter is installed should be as close as possible to the sensor diameter. If it is not consistent, a pipe diameter slightly larger than the sensor diameter should be used, and the error should be ≤3% and not more than 5mm.
3. When the measured medium contains more impurities, the filter should be installed outside the length required for the straight pipe section upstream of the sensor.
4, the sensor should be avoided on the pipeline with mechanical vibration, and try to avoid strong electromagnetic field interference. When vibration cannot be avoided, consider adding a bracket to the straight pipe section about 2DN before and after the sensor.
Plug-in electromagnetic flowmeter features
Corrosion-resistant full stainless steel material, ABS full mold production probe structure is simple, firm, no moving parts, long service life, reliable measurement, strong anti-interference ability, small size, light weight, easy installation, small maintenance range, large measurement range, temperature-free measurement The influence of changes in density, pressure, viscosity, conductivity, etc., zero pressure loss can be installed and disassembled under continuous flow, which brings convenience to the user's maintenance. The manufacturing cost and installation cost are lower than the general electromagnetic flowmeter. It is especially suitable for large and medium-diameter pipeline flow measurement. It adopts advanced processing technology, solid-state packaging, vibration resistance and long life. It makes the meter have good measurement accuracy and stability. The flowmeter not only has 4-20mA current signal output, but also has 1-2000HZ frequency output digital communication output: RS485, RS232, HART, Modbus.