Vortex flowmeter installation method
1. The vortex flowmeter can only be measured in one direction. The installation should pay attention to ensure that the direction of the medium flow is consistent with the direction indicated by the flowmeter arrow.
2. The best installation method of the vortex flowmeter is vertical installation, and the medium passes through the flowmeter from bottom to top. Install the flowmeter on a vertical pipe with the flow direction from bottom to top.
3. When installing horizontally, the flowmeter must be installed in the high pressure zone of the whole system and ensure the corresponding outlet pressure; do not install at the highest point of the pipeline, because the highest point is often gas accumulation, the pipeline is not full, and the outlet cannot be directly emptied.
4. When measuring high temperature fluid, try to use vertical installation; if you have to install horizontally, please install the transmitter part of the flowmeter vertically downwards or horizontally to avoid excessive temperature; pay attention to air flow at installation location Or well ventilated.
5. Straight pipe section requirements: at least 15 times the pipe diameter before the flow meter and 5 times the pipe diameter after the flow meter. If there are elbows, indents, expansions and other sources of interference in front of the flowmeter, the diameter of the flowmeter should be 30–40 times, and the diameter of the flowmeter should be 6 times. The flow meter should be installed upstream of the regulator valve, pressure or temperature sensor.
6. When installing, pay attention to the pipe diameter should be slightly larger than or equal to the inner diameter of the instrument.
7. When using the sealing ring, the inner diameter of the sealing ring should be slightly larger than or equal to the inner diameter of the instrument, and the center of the sealing ring is at the center of the pipe.
Third, the spiral vortex flowmeter measurement characteristics
The spiral vortex flowmeter is a flowmeter that began to appear in the 1970s. Its working principle is: the gas that enters the gas swirling vortex flowmeter is first forced by the spiral spinner to accelerate the rotation to form a vortex, the center of the vortex. For the vortex core. The accelerated vortex enters the enlarged section and then decelerates sharply. The pressure rises to produce a recirculation. Under the action of the recirculation, the vortex core makes a spiral precession around the axis of the flowmeter. The flow rate Q can be derived by measuring the vortex precession frequency f by sensing the sensitive component.
Fourth, gas turbine flowmeter and spiral vortex flowmeter measurement difference
The gas turbine flowmeter has a small pressure loss and can be suitable for gas metering in low pressure conveying applications. Gas-injected vortex flowmeters have a slightly higher pressure loss, and gas metering in low-pressure delivery situations sometimes has problems.
Gas turbine flowmeters require high media cleanliness and can be damaged if used improperly. The gas swirling vortex flowmeter gas swirling vortex flowmeter requires no gas turbine flowmeter and is not damaged.
Gas turbine flowmeters are highly accurate. It is the most accurate of all flow meters. The gas spiraling vortex flowmeter is not as accurate as the former.
Turbine flow meter applications
Turbine flow meters are widely used in the following measurement objects: petroleum, organic liquids, inorganic liquids, liquefied gases, natural gas, gas and cryogenic fluids. In the transshipment and gathering stations of foreign liquefied petroleum gas, refined oil and light crude oil, the first and last stations of large crude oil transmission pipelines use it for trade settlement. In Europe and the United States, the turbine flowmeter is the natural gas meter next to the orifice flowmeter. In the Netherlands alone, more than 2,600 gas turbine flowmeters of various sizes and pressures from 0.8 MPa to 6.5 MPa are used on the natural gas pipeline. Has become an excellent natural gas flow meter. Although the excellent metering characteristics of the turbine flow meter are favored by people, the impression is that the moving parts are short in use time, and they are inevitable in the selection. After people's unremitting efforts, it should be said that the situation has changed a lot. As the most versatile flowmeter, the turbine flowmeter has been developed into a multi-variety, full-series, multi-size mass production scale.