Vortex flowmeter analysis and solution
6. The connection problem between the secondary instrument and the subsequent instrument. Due to the problem of the subsequent instrument or the maintenance of the subsequent instrument, the mA output circuit of the secondary instrument is interrupted. For this type of secondary instrument, this part is mainly related to the problem 2. Especially for the subsequent recorders, in the case that the recorder cannot be repaired for a long time, it is necessary to pay attention to shorting the output of the secondary meter.
7. The circuit always has no indication due to the failure of the secondary instrument flat-axle cable. Due to long-term operation, coupled with the influence of dust, the flat-axle cable is faulty, and the problem can be solved by cleaning or replacing the flat-axis cable.
8. For the problem 7, the main problem is that the secondary instrument shows that the fixing screw of the meter head is loose, causing the head to sink, the pointer and the case friction are large, the movement is not working, and the problem is solved by adjusting the meter head and re-fixing.
9. Use environmental issues. In particular, the sensor part installed in the well is affected by the humidity of the environment, which causes the circuit board to be damp. This part is mainly related to questions 2 and 2. Through the corresponding technical improvement measures, the sensor part with large humidity is re-separated from the probe part and the conversion part, and the separate type sensor is used. Therefore, the working environment is good, and the instrument has been running well.
10. Due to the poor adjustment of the site, or due to the actual situation after the adjustment. Due to the on-site vibration and noise balance adjustment and sensitivity adjustment is not good. Or because of the re-allocation of the situation after a period of operation after the adjustment, causing the indication problem, this part of the reason is mainly related to questions 4 and 5. Use an oscilloscope, plus the combined process operation, and re-adjust.
Executive Standard: JB/T 9248-1999
Nominal diameter: 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000
Maximum flow rate: 15m/s
Accuracy: DNl5~DN600, indication: ±0.3% (flow rate ≥1m/s); ±3mm/s (flow rate <1m/s)
DN700-DN3000, ±0.5% of the indicated value (flow rate ≥0.8m/S); ±4mm/s (flow rate <0.8m/S)
Fluid conductivity ≥5uS/cm
Nominal pressure:
DNl5~DN: 1504.0MPa, DNl5~DN600: 1.6MPa, DN200~DN1000: 1.0MPa, DN700~DN3000: 0.6MPa, Special order: 6.3, 10MPa
Ambient temperature
Sensor: -25 °C - ten 60 °C
Converter and integrated type: -10 ° C - ten 60 °C
Lining material: PTFE, neoprene, polyurethane, polytetrafluoroethylene (F46), screened PFA
Maximum fluid temperature
- Body type 70 °C
Separate type: Polychloroprene lining 80 ° C; 120 °C (specify when ordering)
Polyurethane lining 80 °C
PTFE lining
Polytetrafluoroethylene propylene (F46) 100 °C; 150 °C (specify when ordering)
Screening PFA
Signal electrode and grounding electrode material: stainless steel 0Crl8Nil2M02Ti, Hastelloy C, Hastelloy B, titanium, tantalum, platinum/rhodium alloy, stainless steel coated tungsten carbide
Electrode scraper mechanism: DN300-DN3000
Connecting flange material: carbon steel
Grounding flange material: stainless steel 1Crl8Ni9Ti
Import protection:
DN65—DNl50: Stainless steel 1Crl8Ni9Ti
Flange material
DN200~DNl600: Carbon steel ten stainless steel 1Crl8Ni9Ti
Shell protection
DNl5~DN3000 separate rubber or polyurethane lining sensor: IP65 or IP68
Other sensors, body flow meters and split converters: IP65
Spacing (separate type): The converter distance sensor generally does not exceed 100m
Turbine flow meter applications
Turbine flow meters are widely used in the following measurement objects: petroleum, organic liquids, inorganic liquids, liquefied gases, natural gas, gas and cryogenic fluids. In the transshipment and gathering stations of foreign liquefied petroleum gas, refined oil and light crude oil, the first and last stations of large crude oil transmission pipelines use it for trade settlement. In Europe and the United States, the turbine flowmeter is the natural gas meter next to the orifice flowmeter. In the Netherlands alone, more than 2,600 gas turbine flowmeters of various sizes and pressures from 0.8 MPa to 6.5 MPa are used on the natural gas pipeline. Has become an excellent natural gas flow meter. Although the excellent metering characteristics of the turbine flow meter are favored by people, the impression is that the moving parts are short in use time, and they are inevitable in the selection. After people's unremitting efforts, it should be said that the situation has changed a lot. As the most versatile flowmeter, the turbine flowmeter has been developed into a multi-variety, full-series, multi-size mass production scale.