The structure of the electromagnetic flowmeter is mainly composed of a magnetic circuit system, a measuring conduit, an electrode, a casing, a lining, and a converter.
Magnetic circuit system: its role is to produce a uniform DC or AC magnetic field. The DC magnetic circuit is realized by a permanent magnet, which has the advantages of simple structure and less interference by the alternating magnetic field, but it is easy to polarize the electrolyte liquid in the measuring duct, so that the positive electrode is surrounded by negative ions, and the negative electrode is positive ion Surrounding, that is, the polarization phenomenon of the electrode, and causing an increase in internal resistance between the two electrodes, thus seriously affecting the normal operation of the meter. When the diameter of the pipe is large, the permanent magnets are correspondingly large, bulky and uneconomical, so the electromagnetic flowmeter generally adopts an alternating magnetic field and is generated by the excitation of a 50HZ power frequency power source.
Measuring catheter: its function is to let the conductive liquid to be tested pass. In order to make the magnetic flux diverted or short-circuited when the magnetic flux passes through the measuring catheter, the measuring catheter must be made of non-magnetic, low electrical conductivity, low thermal conductivity and mechanical strength. Non-magnetic stainless steel, FRP, high strength can be used. Plastic, aluminum, etc.
According to different output signals, these products can be divided into LWGY-□N type and LWGY-□A type.
LWGY-□N type sensor: 12~24VDC power supply, three-wire pulse output, high level ≥8V, low level ≤0.8V; signal transmission distance ≤1000m;
LWGY-□A type transmitter: 24VDC power supply, 2-wire 4-20mA output, signal transmission distance ≤1000.
This type of turbine flow products are divided into basic type and explosion-proof type (ExdIIBT6).
2, intelligent integrated turbine flowmeter
Intelligent integrated turbine flowmeter adopts advanced ultra-low-power single-chip microcomputer technology to develop a new intelligent instrument integrating turbine flow sensor and display integration. It adopts double-row liquid crystal field display, with compact structure, intuitive reading and reliability. High, free from external power interference, lightning strike, low cost and other obvious advantages. The instrument has three-point correction of the meter coefficient, the intelligent compensation meter coefficient is nonlinear, and field correction can be performed. The high-definition LCD displays both instantaneous flow (4 significant digits) and cumulative flow (8 significant digits with clear function). All valid data is not lost after 10 years of power failure. These turbine flowmeters are explosion-proof products with an explosion-proof rating of ExdIIBT6.
Selection of measurement types for special industrial and commercial users
I. Introduction
At present, there are some special users in the supply of industrial and commercial users. On the one hand, the gas points are more dispersed, and the amount of gas used in a single combustion device is small (generally 2 to 9 m3/h); on the other hand, the total amount of gas used is Very large, there are many problems with the accurate measurement of the natural gas supply of such users. This type of industrial and commercial users have multiple fuel appliances with different gas consumption. Different gas consumption at different time periods brings certain difficulties to the accurate measurement of natural gas. Under the condition of satisfying the maximum gas consumption, it cannot be measured under the condition of small flow. The problem.
1. Case 1: A large shopping and entertainment mall
The mall has 22 gas points distributed on the second, fourth and fifth floors. In order to ensure the accuracy of natural gas measurement, the gas supply system has a master meter (turbine flow meter Q650) and 22 sets of compensation functions. As a metering table, the flow meter usually has a gas consumption of about 400m3/d and a holiday of about 800m3/d. It is found through the data collection that the total number of meters and sub-meters is about 17m3 per day; in the initial 54d. The cumulative gas consumption of the master meter and the minute meter differs by 11511.80 m3.