The structure of the electromagnetic flowmeter is mainly composed of a magnetic circuit system, a measuring conduit, an electrode, a casing, a lining, and a converter.
Magnetic circuit system: its role is to produce a uniform DC or AC magnetic field. The DC magnetic circuit is realized by a permanent magnet, which has the advantages of simple structure and less interference by the alternating magnetic field, but it is easy to polarize the electrolyte liquid in the measuring duct, so that the positive electrode is surrounded by negative ions, and the negative electrode is positive ion Surrounding, that is, the polarization phenomenon of the electrode, and causing an increase in internal resistance between the two electrodes, thus seriously affecting the normal operation of the meter. When the diameter of the pipe is large, the permanent magnets are correspondingly large, bulky and uneconomical, so the electromagnetic flowmeter generally adopts an alternating magnetic field and is generated by the excitation of a 50HZ power frequency power source.
Measuring catheter: its function is to let the conductive liquid to be tested pass. In order to make the magnetic flux diverted or short-circuited when the magnetic flux passes through the measuring catheter, the measuring catheter must be made of non-magnetic, low electrical conductivity, low thermal conductivity and mechanical strength. Non-magnetic stainless steel, FRP, high strength can be used. Plastic, aluminum, etc.
Gas turbine flowmeter and screwing vortex flowmeter measurement difference
Keywords: gas turbine flowmeter, Tianxin gas turbine flowmeter, gas gas turbine flowmeter
The gas turbine flowmeter has good repeatability and is the preferred flow meter for trade settlement. The gas swirling vortex flowmeter is generally repeatable.
The gas turbine flowmeter can obtain very high frequency signals with strong signal resolution. The frequency of the gas swirling vortex flowmeter is very low, and the smaller the diameter, the lower the signal resolution. The measurement error is to be measured.
The gas turbine flowmeter has a wide range, generally 40:1~20:1, and has a wide measuring range, which can be suitable for occasions with large flow changes. When natural gas is delivered, the flow changes are generally large and, therefore, are particularly suitable for natural gas measurements. The latter range is medium, generally 15:1 to 10:1, and the measurement range is slightly narrower. When measuring gas, it is more suitable for occasions where the flow rate does not change much.
In terms of seismic performance, gas turbine flowmeters have better resistance to pipeline vibration. The gas swirling vortex flowmeter is susceptible to pipeline vibration and should be taken care of when using it.
Second, choose from the type of flow meter
Various flow meters, such as volumetric flowmeters, speedmeters, and differential pressuremeters, have different characteristics. Different flowmeter types have different turndown ratios. The turbine flowmeter has a turndown ratio of 1:20 to 1:30, the Roots flowmeter has a turndown ratio of 1:20 to 1:160, and the film gauge has a turndown ratio of 1: 160 (The error characteristic curves of these three kinds of flow meters are shown in Figure 1), and the appropriate flow meter should be selected according to the actual situation.
By comparing the error characteristics of the above flowmeters, it can be seen that the starting flow of the membrane meter and the Roots flowmeter is small, the initial flow of the turbine meter is relatively large, and the membrane surface exhibits a positive deviation in the small flow state. The Roots flowmeter exhibits a negative deviation. At low flow rates, the gas supply company is more willing to select a membrane meter for metering.