Pressure and temperature selection
The actual working pressure of the fluid in the pipeline should be less than the rated working pressure of the flowmeter. Pay attention to whether there is negative pressure in the pipeline, such as the evaporation process, and the negative pressure is up to -60KPa. Such working conditions should be communicated with the manufacturer's technicians when ordering. Strict requirements are imposed on the lining material. The actual temperature should meet the temperature requirements specified by the flowmeter.
Power supply selection
The choice of the electromagnetic flowmeter power supply should be selected according to the flowmeter itself and the environment of the site. If the site allows, the power supply is convenient, safe and easy to maintain. As a chemical company, more than 90% of the raw materials and process links are in the liquid phase. During operation, the internal humidity of the workshop is large, and no flammable gas is generated during the whole operation. It is safer to use DC24V for power supply. Outdoor dry environment, choose AC220V power supply, convenient lead wire, good maintenance and low cost.
Some explosion-proof occasions, such as flowmeters used in gas boilers, are ideal for battery-powered electromagnetic flowmeters.
However, since the volume of condensed water in the wet steam is relatively small, the flow of excess water in the ascending pipe often appears as an annular flow structure, but when the amount of water is particularly large, it also appears as a ring with fibers. Flow structure. Among them, the fibrous fluid is actually a condensed water. Flow in a vertically descending pipe: In a vertically descending pipe, the structure of the gas-liquid two-phase flow is similar to that of a vertically ascending flow, but differs not only in the opposite flow direction but also in the case of the same average flow velocity. The flow rate of the liquid in the vertical drop pipe is much faster than the flow rate of the liquid in the vertical rise pipe.
Second, steam vortex flowmeter measurement considerations
Vortex flowmeters measure steam. Accurately arrange the steam traps accurately: People have long discovered that when the steam has more water, the vortex flowmeter will have a "leakage pulse" phenomenon, that is, in the case of a stable steam flow rate, the vortex flow It should have a stable pulse output proportional to the flow rate. But sometimes it is found that the output pulse of the meter is inexplicably less. The distribution of the output pulse recorded on the two-dimensional coordinates can also be clearly seen. The pulse that should be approximately evenly distributed is one less at a place. Pulses, in severe cases, are a lot less pulses, and in the worst case, there are no pulses at all. This may be related to the formation of a vortex column by impinging on a large volume of droplets having a non-uniform distribution on the vortex generator.
Second, the gas turbine flowmeter projection operation steps
1. Open the bypass shut-off valve;
2. Open the flow upstream shutoff valve;
3. Slowly open the downstream shutoff valve of the flowmeter;
4. Slowly close the bypass shutoff valve.
Third, the gas turbine flowmeter stop table operation steps
1. Open the bypass shut-off valve;
2. Turn off the downstream shutoff valve of the flowmeter;
3. Close the flow upstream shutoff valve;
Fourth, gas turbine flowmeter use precautions
1. The newly installed or repaired pipeline must be purged. When purging the metering line, the flow meter must be removed and the corresponding short section replaced the flow meter for purging.
2. When the gas turbine flowmeter pipeline is put into production, it should be slowly boosted and gradually increase the flow rate. When the production is stopped, it should be slowly depressurized.
3. Check the sound of the gas turbine flowmeter or the vibration of the casing during operation to determine whether the turbine blades and bearings are working properly. At low flow rates, attention should be paid to the change in sound, and the vibration of the casing is observed at high flow rates.