Selection of electrodes and lining
Standard electrodes are used for media that do not produce non-staining electrodes such as crystals, agglomerates, and scales. Otherwise, a doctor blade electrode is used. In addition to the pure alkaline solution, the dosing solution (crystallization of boron and magnesium double salt), the washing liquid and other electromagnetic flowmeters that use the scraper electrode, the other uses the electromagnetic flowmeter of the standard electrode. Since the process pipes in the workshop are basically made of plastic insulation material, if the electromagnetic flowmeter with two electrodes is selected, the grounding ring must be configured to ensure the measurement accuracy. However, the common grounding ring is easy to corrode, and the corrosion-resistant titanium or 钽 grounding ring is high in cost, so the three-electrode electromagnetic flowmeter is selected to ensure measurement accuracy, reduce cost, and convenient installation and maintenance.
Flowmeter type selection
The types of electromagnetic flowmeters are divided into: integral type and split type. In Qinghai, the coldest temperature in winter is up to -30 °C. Many metered electromagnetic flowmeters are outdoors, and the environmental humidity of magnesium-lithium separation, pressure filtration and washing processes in lithium and boron systems is large. Exquisite, evaporation, conversion and other processes up to 90 °C. Therefore, the humidity of the high temperature, low temperature, high temperature fluid, vibration source and other working conditions select a split flow meter to effectively prevent the impact on the measuring components, to ensure measurement accuracy and the life of the electromagnetic flowmeter. However, it should be noted that the signal cable between the electromagnetic flowmeter sensor and the transmitter should not be too long, and the manufacturer-specific cable should be used, otherwise the measurement accuracy will be affected. The rest of the working conditions are more ideal.
First, the gas turbine flowmeter installation requirements
1. When the gas flowmeter is installed, it is strictly forbidden to directly conduct electric welding at the inlet and outlet flanges to avoid burning the internal parts of the flowmeter;
2. For the newly installed or overhauled pipeline, it must be purged to remove the debris in the pipeline before installing the flowmeter;
3. The gas turbine flowmeter should be installed in a place that is easy to maintain, has no strong electromagnetic field interference, no mechanical vibration and thermal radiation;
4. Gas turbine flowmeters should not be used in places where flow is frequently interrupted and there is strong pulsating flow or pressure pulsation;
5, the gas turbine flowmeter should ensure that the pipeline is coaxial, and prevent the gasket from protruding into the pipeline, otherwise it will disturb the flow profile;
6. The flow direction of the gas turbine flowmeter should be consistent with the direction marked on the casing. The upper and lower pipelines of the flowmeter should be guaranteed with 2DN and 1DN straight pipe sections;
7. When using external power supply, the flowmeter must have reliable grounding, but it should not share the grounding wire with the high-power system; when the pipeline is installed or repaired, the grounding wire of the welding system should not be overlapped with the flowmeter.
8. Since the flowmeter needs to be repaired and calibrated, in order to ensure normal gas supply, bypass piping should be set. The bypass pipe valve must be closed during normal use;
9. When constructing pipelines, it is advisable to install telescopic tubes or bellows to avoid serious stretching and causing breakage of the flowmeter;
10. When the gas turbine flowmeter is installed outdoors, the upper part should be covered to prevent the rainwater from immersing and the sun exposure affecting the service life of the flowmeter;
11. When installing the gas turbine flowmeter, it is advisable to add a filter to the flowmeter (filtering accuracy is recommended ≤20μm).
Second, gas turbine flowmeter requirements
1. When the gas turbine flowmeter is put into operation, the upstream valve of the flowmeter should be slowly opened (not less than 15 seconds), and then the downstream valve of the flowmeter should be slowly opened to prevent the instantaneous airflow from rushing to the turbine;
2. When the flowmeter needs to have a long-distance signal, it should be connected to the external power supply (+12~+24VDC) strictly according to the electrical performance index of the gas turbine flowmeter. It is strictly forbidden to directly connect 220VAC (or 380VAC) power supply at the signal output.
Sensor check
Test equipment: one 500MΩ insulation resistance tester, one multimeter.
Test steps:
(1) When the pipeline is filled with medium, measure the resistance between terminals A, B and C with a multimeter. The resistance between A-C and B-C should be equal. If the difference is more than 1 time, there may be leakage of the electrode, condensation on the outer wall of the measuring tube or the junction box.
(2) In the case of lining drying, measure the insulation resistance between A-C and B-C with MΩ meter (should be greater than 200MΩ). Then use a multimeter to measure the resistance of the two electrodes in terminals A and B and the measuring tube (should be in short-circuit communication). If the insulation resistance is small, indicating that the electrode is leaking, the entire flowmeter should be returned to the factory for repair. If the insulation is reduced but there is still more than 50 MΩ and the inspection result of step (1) is normal, the outer wall of the measuring tube may be damp, and the inside of the outer casing may be dried by a hot air blower.
(3) Use a multimeter to measure the resistance between X and Y. If it exceeds 200 Ω, the excitation coil and its lead wire may be open or poorly connected. Remove the terminal block check.
(4) Check the insulation resistance between X, Y and C, which should be above 200 MΩ. If it is lowered, dry the inside of the casing with hot air. In actual operation, the decrease in coil insulation will result in increased measurement error and unstable instrument output signal.
(5) If it is determined that the sensor is faulty, please contact the manufacturer of the electromagnetic flowmeter. The general site cannot be solved and needs to be repaired by the manufacturer.