Selection of electrodes and lining
Standard electrodes are used for media that do not produce non-staining electrodes such as crystals, agglomerates, and scales. Otherwise, a doctor blade electrode is used. In addition to the pure alkaline solution, the dosing solution (crystallization of boron and magnesium double salt), the washing liquid and other electromagnetic flowmeters that use the scraper electrode, the other uses the electromagnetic flowmeter of the standard electrode. Since the process pipes in the workshop are basically made of plastic insulation material, if the electromagnetic flowmeter with two electrodes is selected, the grounding ring must be configured to ensure the measurement accuracy. However, the common grounding ring is easy to corrode, and the corrosion-resistant titanium or 钽 grounding ring is high in cost, so the three-electrode electromagnetic flowmeter is selected to ensure measurement accuracy, reduce cost, and convenient installation and maintenance.
Flowmeter type selection
The types of electromagnetic flowmeters are divided into: integral type and split type. In Qinghai, the coldest temperature in winter is up to -30 °C. Many metered electromagnetic flowmeters are outdoors, and the environmental humidity of magnesium-lithium separation, pressure filtration and washing processes in lithium and boron systems is large. Exquisite, evaporation, conversion and other processes up to 90 °C. Therefore, the humidity of the high temperature, low temperature, high temperature fluid, vibration source and other working conditions select a split flow meter to effectively prevent the impact on the measuring components, to ensure measurement accuracy and the life of the electromagnetic flowmeter. However, it should be noted that the signal cable between the electromagnetic flowmeter sensor and the transmitter should not be too long, and the manufacturer-specific cable should be used, otherwise the measurement accuracy will be affected. The rest of the working conditions are more ideal.
Second, the compressed air vortex flowmeter installation steps
1. The special flanges to be equipped are welded to the upstream and downstream straight pipe sections respectively, so that the inner diameters of the special flange and the straight pipe section are strictly vertical and concentric.
2. Install the sensor clip on the upper and lower straight pipe sections welded with special flanges and fasten them with bolts. The upstream and downstream straight sections should be kept concentric with the sensor.
3. It should be noted that the flow direction of the sensor should be consistent with the flow direction of the fluid in the pipeline.
Third, special attention should be paid when installing compressed air vortex flowmeter
1. When welding special flanges and straight pipe sections, the sensor should be removed and the sensor welding flange must not be carried.
2. Before the sensor is installed, the sealing ring must be placed in the groove of the flange.
3. The pressure point and temperature measurement point should be at the 3DN~5DN and 6N~8DN downstream of the sensor.
4. When the high temperature pipeline is insulated, do not wrap the sensor to avoid damage.
5. The cable connecting the vortex flowmeter should be as far away as possible from the interference of strong electromagnetic fields. It is absolutely not allowed to lay with high voltage cables. The shielded cable should be as short as possible, the maximum length should not exceed 500 meters, and should not be coiled to reduce the distributed inductance.
Intelligent GPRS MAG flow meter working principle
Since the GPRS communication is a data packet communication network based on an IP address, after the monitoring center computer logs in to the Internet network, the IP address is assigned by the Internet, and each GPRS monitoring point establishes a connection with the host through the address and communicates. Each monitoring point collects data through the data acquisition module, processes the data through the embedded processor in the GPRS terminal, encapsulates the protocol, sends it to the GPRS network, and transmits it to the user data monitoring center computer.
Battery-powered converter GPRS communication introduction
The battery-powered converter with GPRS function can directly send data to the remote control center through the GPRS wireless module GPRS-DY or GPRS-DF, hereinafter referred to as the GPRS module, and then store the collected data in the database at regular intervals. Through the system, even in an off-site away from the observation site, it is convenient to collect and read data of each monitoring point, and truly realize the functions of remote monitoring and data sharing.