Selection of electrodes and lining
Standard electrodes are used for media that do not produce non-staining electrodes such as crystals, agglomerates, and scales. Otherwise, a doctor blade electrode is used. In addition to the pure alkaline solution, the dosing solution (crystallization of boron and magnesium double salt), the washing liquid and other electromagnetic flowmeters that use the scraper electrode, the other uses the electromagnetic flowmeter of the standard electrode. Since the process pipes in the workshop are basically made of plastic insulation material, if the electromagnetic flowmeter with two electrodes is selected, the grounding ring must be configured to ensure the measurement accuracy. However, the common grounding ring is easy to corrode, and the corrosion-resistant titanium or 钽 grounding ring is high in cost, so the three-electrode electromagnetic flowmeter is selected to ensure measurement accuracy, reduce cost, and convenient installation and maintenance.
Flowmeter type selection
The types of electromagnetic flowmeters are divided into: integral type and split type. In Qinghai, the coldest temperature in winter is up to -30 °C. Many metered electromagnetic flowmeters are outdoors, and the environmental humidity of magnesium-lithium separation, pressure filtration and washing processes in lithium and boron systems is large. Exquisite, evaporation, conversion and other processes up to 90 °C. Therefore, the humidity of the high temperature, low temperature, high temperature fluid, vibration source and other working conditions select a split flow meter to effectively prevent the impact on the measuring components, to ensure measurement accuracy and the life of the electromagnetic flowmeter. However, it should be noted that the signal cable between the electromagnetic flowmeter sensor and the transmitter should not be too long, and the manufacturer-specific cable should be used, otherwise the measurement accuracy will be affected. The rest of the working conditions are more ideal.
Compressed air flowmeter installation requirements
Keywords: compressed air flow meter, compressed air vortex flowmeter, air flowmeter
First, the compressed air vortex flowmeter installation requirements
1. The upstream of the compressed air vortex flowmeter should avoid installing the regulating valve or the semi-opening valve. The regulating valve or the semi-opening valve is installed after the downstream 8DN of the sensor.
2. The straight pipe section where the flowmeter is installed should be as close as possible to the sensor diameter. If it is not consistent, a pipe diameter slightly larger than the sensor diameter should be used, and the error should be ≤3% and not more than 5mm.
3. When the measured medium contains more impurities, the filter should be installed outside the length required for the straight pipe section upstream of the sensor.
4, the sensor should be avoided on the pipeline with mechanical vibration, and try to avoid strong electromagnetic field interference. When vibration cannot be avoided, consider adding a bracket to the straight pipe section about 2DN before and after the sensor.
Selection of measurement types for special industrial and commercial users
2. Case 2: A heavy machine tool factory
The main gas plant of the heavy-duty machine tool factory is 13 production kiln, and there is also a machine repair workshop and 63 mobile burners. The total gas load of all gas facilities is 1837m3/h. See Table 1 for details. The customer promised that all gas facilities could not be fully activated at the same time, the maximum gas consumption required was 1200m3/h, and the minimum pressure required before the furnace was 0.055MPa. The pressure regulator used in the on-site pressure regulating metering box is opened and ready, and the flow meter is in the form of a G1600 turbine table plus bypass.
When debugging the kiln, it was found that the flowmeter in the pressure regulating metering box had a stop-and-go phenomenon. If only some of the kiln was opened or only some of the kiln was used, there would be a phenomenon that the flowmeter did not measure or the measurement error was large.