Choice of caliber
The choice of the diameter of the electromagnetic flowmeter is not necessarily the same as the diameter of the pipe, and should be determined by the flow rate and flow rate. However, as the chemical raw materials and intermediate liquid of Salt Lake, the viscosity is large and the flow rate is low (generally 2.0 to 4.0 m/s). The electromagnetic flowmeter is used on such a pipe, and the diameter of the sensor is the same as the diameter of the pipe. If the flow rate is lower than 1.0m/s, an electromagnetic flowmeter of appropriate flow rate can be selected to ensure measurement accuracy and relatively reduce investment.
Selection of flow rate and range
Basically, they are anti-corrosion plastic pipes, and considering the lining of the flow meter, the flow rate is generally controlled at 2m/s. For some materials that are easy to crystallize (such as sodium carbonate solution, compounding liquid: crystallized mainly boron and magnesium double salt), the flow rate is increased to 3.0 to 4.0 m/s by taking measures. The flow rate will increase the flow noise, and the vibration of the pipeline will affect the measurement accuracy. Under the condition that the electromagnetic flowmeter is installed, the shock absorber should be installed before and after. The full scale of the meter is greater than the expected maximum flow value, which is typically 1.2 times the estimated maximum flow. The normal measurement flow is greater than 50% of the full scale of the meter to ensure a certain measurement accuracy.
Steam vortex flowmeter measurement requirements
Keywords: steam vortex flowmeter, saturated steam vortex flowmeter, superheated steam vortex flowmeter
What should I pay attention to when measuring vortex flowmeter? What is the best way to measure steam installation by vortex flowmeter? Can vortex flowmeters be used for steam metering? The vortex flowmeters are evaluated for their measurement performance under single-phase flow conditions. There is currently no single-phase flowmeter for measuring the system variation of two-phase flow. However, the two-phase flow exists objectively, and its influence on flow measurement is unavoidable. Despite the difficulties, people are still trying to study the mechanism of its influence on flow measurement, and take corresponding countermeasures to improve the accuracy of flow measurement.
First, steam flow measurement difficulties
During long-distance transportation, dry steam will partially condense due to heat loss, resulting in reduced steam dryness and become wet steam. The gas-liquid two-phase flow structure in the horizontal pipe is related to the gas-liquid two-phase volume ratio and the flow velocity. In the steam pipe, since the volume ratio of the condensed water in the wet steam is small, the drain pipe drawn from the bottom of the horizontal pipe is made. , can receive a good hydrophobic effect. When the flow rate is particularly high, it will also behave as a circular flow, that is, there is a liquid film on the pipe wall, and the central part of the pipe is a gas core with droplets. Due to the influence of gravity during horizontal flow, the lower liquid film is higher than the upper pipe. The thickness of the wall, in the vertical ascending pipeline, the basic structure of the gas-liquid two-phase flow has a fine bubble flow structure, a bullet-like flow structure, a block flow structure, a ring-shaped flow structure with fibers, and an annular flow structure.
Selection of measurement types for special industrial and commercial users
I. Introduction
At present, there are some special users in the supply of industrial and commercial users. On the one hand, the gas points are more dispersed, and the amount of gas used in a single combustion device is small (generally 2 to 9 m3/h); on the other hand, the total amount of gas used is Very large, there are many problems with the accurate measurement of the natural gas supply of such users. This type of industrial and commercial users have multiple fuel appliances with different gas consumption. Different gas consumption at different time periods brings certain difficulties to the accurate measurement of natural gas. Under the condition of satisfying the maximum gas consumption, it cannot be measured under the condition of small flow. The problem.
1. Case 1: A large shopping and entertainment mall
The mall has 22 gas points distributed on the second, fourth and fifth floors. In order to ensure the accuracy of natural gas measurement, the gas supply system has a master meter (turbine flow meter Q650) and 22 sets of compensation functions. As a metering table, the flow meter usually has a gas consumption of about 400m3/d and a holiday of about 800m3/d. It is found through the data collection that the total number of meters and sub-meters is about 17m3 per day; in the initial 54d. The cumulative gas consumption of the master meter and the minute meter differs by 11511.80 m3.