The mediums that need to be measured in the site are different. Now, a brief introduction is made on the selection of flow meters for different media.
The selection of large water flow meter: suitable for electromagnetic flowmeter, ultrasonic flowmeter. Other applications such as vortex flowmeters, orifice flowmeters, etc. have faded out of this application, and these two types of flow meters are the most important in the industry. In particular, it should be mentioned that the application of Kaifeng Shengda's plug-in flowmeter and electromagnetic flowmeter are better.
Sewage, pulp and other turbid liquid meter selection: electromagnetic flowmeter can be used. However, when choosing an electromagnetic flowmeter, consider that the liquid does not contain more air or bubbles.
The meter with more bubbles of liquid selection: Doppler ultrasonic flowmeter can be selected, using this type of flowmeter to measure the fluid with bubbles, the effect is very good.
Flow meter selection with low conductivity such as pure water and demineralized water: Turbine flow meter is very suitable for measuring such fluids.
Flow meter selection for strong corrosive media such as acid and lye: 1. Electromagnetic flowmeter with acid and alkali lining. 2. clamp type ultrasonic flowmeter.
Selection of flowmeters for mediums with large concentration and large solid particle content such as mortar and electric powder slurry: electromagnetic flowmeter.
Flow meter selection for oil media such as oil and diesel: turbine flow meter and ultrasonic flow meter.
Gas flow meter selection: vortex flowmeter.
Second, the compressed air vortex flowmeter installation steps
1. The special flanges to be equipped are welded to the upstream and downstream straight pipe sections respectively, so that the inner diameters of the special flange and the straight pipe section are strictly vertical and concentric.
2. Install the sensor clip on the upper and lower straight pipe sections welded with special flanges and fasten them with bolts. The upstream and downstream straight sections should be kept concentric with the sensor.
3. It should be noted that the flow direction of the sensor should be consistent with the flow direction of the fluid in the pipeline.
Third, special attention should be paid when installing compressed air vortex flowmeter
1. When welding special flanges and straight pipe sections, the sensor should be removed and the sensor welding flange must not be carried.
2. Before the sensor is installed, the sealing ring must be placed in the groove of the flange.
3. The pressure point and temperature measurement point should be at the 3DN~5DN and 6N~8DN downstream of the sensor.
4. When the high temperature pipeline is insulated, do not wrap the sensor to avoid damage.
5. The cable connecting the vortex flowmeter should be as far away as possible from the interference of strong electromagnetic fields. It is absolutely not allowed to lay with high voltage cables. The shielded cable should be as short as possible, the maximum length should not exceed 500 meters, and should not be coiled to reduce the distributed inductance.
Second, the gas turbine flowmeter projection operation steps
1. Open the bypass shut-off valve;
2. Open the flow upstream shutoff valve;
3. Slowly open the downstream shutoff valve of the flowmeter;
4. Slowly close the bypass shutoff valve.
Third, the gas turbine flowmeter stop table operation steps
1. Open the bypass shut-off valve;
2. Turn off the downstream shutoff valve of the flowmeter;
3. Close the flow upstream shutoff valve;
Fourth, gas turbine flowmeter use precautions
1. The newly installed or repaired pipeline must be purged. When purging the metering line, the flow meter must be removed and the corresponding short section replaced the flow meter for purging.
2. When the gas turbine flowmeter pipeline is put into production, it should be slowly boosted and gradually increase the flow rate. When the production is stopped, it should be slowly depressurized.
3. Check the sound of the gas turbine flowmeter or the vibration of the casing during operation to determine whether the turbine blades and bearings are working properly. At low flow rates, attention should be paid to the change in sound, and the vibration of the casing is observed at high flow rates.