The mediums that need to be measured in the site are different. Now, a brief introduction is made on the selection of flow meters for different media.
The selection of large water flow meter: suitable for electromagnetic flowmeter, ultrasonic flowmeter. Other applications such as vortex flowmeters, orifice flowmeters, etc. have faded out of this application, and these two types of flow meters are the most important in the industry. In particular, it should be mentioned that the application of Kaifeng Shengda's plug-in flowmeter and electromagnetic flowmeter are better.
Sewage, pulp and other turbid liquid meter selection: electromagnetic flowmeter can be used. However, when choosing an electromagnetic flowmeter, consider that the liquid does not contain more air or bubbles.
The meter with more bubbles of liquid selection: Doppler ultrasonic flowmeter can be selected, using this type of flowmeter to measure the fluid with bubbles, the effect is very good.
Flow meter selection with low conductivity such as pure water and demineralized water: Turbine flow meter is very suitable for measuring such fluids.
Flow meter selection for strong corrosive media such as acid and lye: 1. Electromagnetic flowmeter with acid and alkali lining. 2. clamp type ultrasonic flowmeter.
Selection of flowmeters for mediums with large concentration and large solid particle content such as mortar and electric powder slurry: electromagnetic flowmeter.
Flow meter selection for oil media such as oil and diesel: turbine flow meter and ultrasonic flow meter.
Gas flow meter selection: vortex flowmeter.
Steam vortex flowmeter measurement requirements
Keywords: steam vortex flowmeter, saturated steam vortex flowmeter, superheated steam vortex flowmeter
What should I pay attention to when measuring vortex flowmeter? What is the best way to measure steam installation by vortex flowmeter? Can vortex flowmeters be used for steam metering? The vortex flowmeters are evaluated for their measurement performance under single-phase flow conditions. There is currently no single-phase flowmeter for measuring the system variation of two-phase flow. However, the two-phase flow exists objectively, and its influence on flow measurement is unavoidable. Despite the difficulties, people are still trying to study the mechanism of its influence on flow measurement, and take corresponding countermeasures to improve the accuracy of flow measurement.
First, steam flow measurement difficulties
During long-distance transportation, dry steam will partially condense due to heat loss, resulting in reduced steam dryness and become wet steam. The gas-liquid two-phase flow structure in the horizontal pipe is related to the gas-liquid two-phase volume ratio and the flow velocity. In the steam pipe, since the volume ratio of the condensed water in the wet steam is small, the drain pipe drawn from the bottom of the horizontal pipe is made. , can receive a good hydrophobic effect. When the flow rate is particularly high, it will also behave as a circular flow, that is, there is a liquid film on the pipe wall, and the central part of the pipe is a gas core with droplets. Due to the influence of gravity during horizontal flow, the lower liquid film is higher than the upper pipe. The thickness of the wall, in the vertical ascending pipeline, the basic structure of the gas-liquid two-phase flow has a fine bubble flow structure, a bullet-like flow structure, a block flow structure, a ring-shaped flow structure with fibers, and an annular flow structure.
Intelligent GPRS MAG flow meter working principle
Since the GPRS communication is a data packet communication network based on an IP address, after the monitoring center computer logs in to the Internet network, the IP address is assigned by the Internet, and each GPRS monitoring point establishes a connection with the host through the address and communicates. Each monitoring point collects data through the data acquisition module, processes the data through the embedded processor in the GPRS terminal, encapsulates the protocol, sends it to the GPRS network, and transmits it to the user data monitoring center computer.
Battery-powered converter GPRS communication introduction
The battery-powered converter with GPRS function can directly send data to the remote control center through the GPRS wireless module GPRS-DY or GPRS-DF, hereinafter referred to as the GPRS module, and then store the collected data in the database at regular intervals. Through the system, even in an off-site away from the observation site, it is convenient to collect and read data of each monitoring point, and truly realize the functions of remote monitoring and data sharing.