Measuring principle of electromagnetic flowmeter
The principle of electromagnetic flowmeter measurement is based on Faraday's law of electromagnetic induction. The measuring tube of the flow meter is a non-magnetic alloy short tube lined with an insulating material. The two electrodes are fixed to the measuring tube through the tube wall in the tube diameter direction. The electrode tip is substantially flush with the inner surface of the liner. When the exciting coil is excited by the bidirectional square wave pulse, a working magnetic field having a magnetic flux density B is generated in a direction perpendicular to the axis of the measuring tube. At this time, if the fluid having a certain conductivity passes through the measuring tube, the cutting magnetic line induces the electromotive force E. The electromotive force E is proportional to the product of the magnetic flux density B, the inner diameter D of the measuring tube and the average velocity V. The electromotive force E (flow signal) is detected by the electrode and sent to the converter through the cable. After the converter amplifies the flow signal, it can display the fluid flow, and can output signals such as pulse and analog current for flow control and regulation.
Vortex flowmeter working principle
The working principle of the vortex flowmeter is to arrange a vortex generator in the fluid, so that the vortex is alternately generated on both sides of the body, and the vortex column is asymmetrically arranged downstream of the vortex generator to generate a certain frequency, by the formula f= St*v/(1-1.27d/D)*d, (St is the Strauhal number, which is a dimensionless number, related to the vortex generator and Reynolds number; v is the flow velocity; d is the incident head width; D is the nominal diameter) to get the flow rate.
In general, the vortex flowmeter output signal (frequency) is not affected by changes in fluid properties and composition, which means that the meter factor is only related to the shape and size of the vortex generator and the Reynolds number. Its advantages are: simple and firm structure, convenient installation and maintenance; suitable for a variety of fluids, liquid, gas, steam and some mixed phases are applicable; high precision, generally up to ± 1% R; flow range is wide, up to 10 : 1 or 20:1 or more; low head loss; no zero drift; relatively cheap price; disadvantage: not suitable for low Reynolds number Re <20000, limited use of high viscosity, low flow rate, small diameter The requirements for the environment are high, and places with vibration should be eliminated as much as possible, and the upstream side needs to have a long straight pipe section; the meter factor is lower, and the larger the diameter, the lower the diameter. The signal resolution is reduced, so the aperture should not be too large, generally used in DN15~DN300mm.
Some experiences on using ultrasonic flowmeter
1. The flowmeter has two modes, diagonal and reflective. When the reflection mode is not detected, it can be measured in diagonal mode, so that we have been using the reflection mode.
2. The flowmeter requires a relatively high pipe, and the insulation layer must be scraped off, otherwise it cannot be measured. When we measured the air conditioning water system, we cut the insulation layer with a knife to prevent the sensor. After the measurement, the cut insulation layer was glued. The surface of the pipe should be as bright as possible. If it is too rough, it must be sanded.
3. It is difficult to measure when the fluid in the pipeline is not full, so the measuring position should be as straight as possible, away from elbows, valves and other places.
4. The authenticity of the flowmeter reading depends on the signal strength. When the signal is too low, the result is basically unreliable, generally more than 60% or even more.
5. Since the readings may vary greatly, the approach we take is to have the flowmeter read continuously, such as continuously recording one minute of reading and then taking the average.
6. Measuring hot water lines is more difficult than cold water lines. Because the wall temperature of the hot water pipe is high, the coupling agent is easily formed at a high temperature. In addition to the product's own coupling agent, we have tried toothpaste.
The summary of ultrasonic flowmeter measurement accuracy and accuracy needs to be improved.