Ultrasonic flowmeter classification
Plug-in ultrasonic flowmeter: can be installed and maintained without interruption. Ceramic sensors are used for non-stop production installation using dedicated drilling equipment. Generally for mono measurement, in order to improve measurement accuracy, three channels can be selected.
Pipe-type ultrasonic flowmeter: the pipeline installation needs to be cut, but the subsequent maintenance can be stopped. Mono or 3-channel sensors are available.
External clip-on ultrasonic flowmeter: capable of performing fixed and mobile measurements. It is installed with a special coupling agent (silicone rubber cured at room temperature or high-temperature long-chain polymer grease) and does not damage the pipeline during installation.
Portable Ultrasonic Flowmeter: Portable, built-in rechargeable lithium battery, suitable for mobile measurement, with magnetic sensor.
1, non-contact measurement method, small size, easy to carry
2, suitable for on-site measurement of various sizes of pipe sound guiding media
3, built-in nickel-metal hydride rechargeable battery working time of more than 20 hours
4, user interface is flexible, easy to use
5, intelligent on-site printing function to ensure the integrity of the flow data
6, equipped with an integrated aluminum alloy protective box, can be used in harsh outdoor environments
Hand-held ultrasonic flowmeter: small size, light weight, built-in rechargeable lithium battery, hand-held, with magnetic sensor.
Explosion-proof ultrasonic flowmeter: used for explosive liquid flow measurement, it is explosion-proof and intrinsically safe. That is, the converter is explosion-proof and the sensor is intrinsically safe.
Vortex flowmeter installation method
1. The vortex flowmeter can only be measured in one direction. The installation should pay attention to ensure that the direction of the medium flow is consistent with the direction indicated by the flowmeter arrow.
2. The best installation method of the vortex flowmeter is vertical installation, and the medium passes through the flowmeter from bottom to top. Install the flowmeter on a vertical pipe with the flow direction from bottom to top.
3. When installing horizontally, the flowmeter must be installed in the high pressure zone of the whole system and ensure the corresponding outlet pressure; do not install at the highest point of the pipeline, because the highest point is often gas accumulation, the pipeline is not full, and the outlet cannot be directly emptied.
4. When measuring high temperature fluid, try to use vertical installation; if you have to install horizontally, please install the transmitter part of the flowmeter vertically downwards or horizontally to avoid excessive temperature; pay attention to air flow at installation location Or well ventilated.
5. Straight pipe section requirements: at least 15 times the pipe diameter before the flow meter and 5 times the pipe diameter after the flow meter. If there are elbows, indents, expansions and other sources of interference in front of the flowmeter, the diameter of the flowmeter should be 30–40 times, and the diameter of the flowmeter should be 6 times. The flow meter should be installed upstream of the regulator valve, pressure or temperature sensor.
6. When installing, pay attention to the pipe diameter should be slightly larger than or equal to the inner diameter of the instrument.
7. When using the sealing ring, the inner diameter of the sealing ring should be slightly larger than or equal to the inner diameter of the instrument, and the center of the sealing ring is at the center of the pipe.
Ultrasonic flowmeter measurement principle
When the ultrasonic beam propagates in the liquid, the flow of the liquid will cause a small change in the propagation time, and the change in the propagation time is proportional to the flow velocity of the liquid, and its relationship conforms to the following expression.
among them
θ is the angle between the sound beam and the direction of flow of the liquid
M is the number of linear travels of the sound beam in the liquid
D is the inner diameter of the pipe
Tup is the propagation time of the sound beam in the positive direction
Tdown is the propagation time of the sound beam in the reverse direction
ΔT=Tup –Tdown
Let the speed of sound in the stationary fluid be c, the velocity of the fluid flow be u, and the propagation distance be L. When the sound wave is in the same direction as the fluid flow direction (ie, the downstream direction), the propagation velocity is c+u; otherwise, the propagation velocity is cu. Two sets of ultrasonic generators and receivers (T1, R1) and (T2, R2) are placed at two places separated by L. When T1 is in the forward direction and T2 transmits ultrasonic waves in the reverse direction, the time required for the ultrasonic waves to reach the receivers R1 and R2 respectively is t1 and t2, then
T1=L/(c+u); t2=L/(c-u)
Since the flow velocity of the fluid in the industrial pipeline is much smaller than the sound velocity, that is, c>>u, the time difference between the two is ▽t=t2-t1=2Lu/cc. Thus, the propagation velocity of the acoustic wave in the fluid is known. When it is known, the flow rate u can be obtained by measuring the time difference ▽t, and the flow rate Q can be obtained. The method of measuring the flow using this principle is called the time difference method. In addition, a phase difference method, a frequency difference method, or the like can be used.