Principle analysis of various types of flowmeters
(1) Principles of mechanics: Instruments belonging to such principles have differential pressure and rotor type using Bernoulli's theorem; impulse type and movable tube type using momentum theorem; direct mass type using Newton's second law; The target type of the momentum principle; the turbine type using the angular momentum theorem; the vortex type using the principle of fluid oscillation, the vortex type; the pitot tube type using the total static pressure difference; the volumetric type, the enthalpy, the trough type, and the like.
(2) Electrical principle: The instruments used for such principles are electromagnetic, differential capacitive, inductive, strain resistant, etc.
(3) Acoustic principle: Ultrasonic type, acoustic type (shock wave type), etc. are used for flow measurement using the acoustic principle.
(4) Thermal principle: The heat, direct thermal, indirect calorimetry, etc., which measure the flow using the thermal principle.
(5) Optical principle: laser type, photoelectric type, etc. are instruments belonging to such principles.
(6) Originally based on physical principles: nuclear magnetic resonance, nuclear radiation, etc. are instruments of this type.
(7) Other principles: Marking principle (trace principle, NMR principle), related principles, etc.
The working principle of the impeller type flowmeter is that the impeller is placed in the fluid to be measured, and is rotated by the impact of the fluid flow, and the flow rate is reflected by the speed of the impeller rotation. Typical impeller flow meters are water meters and turbine flow meters, which may be of mechanical transmission output or electrical pulse output. Generally, the water meter output of the mechanical transmission has low accuracy and the error is about ±2%, but the structure is simple and the cost is low. The domestic production has been mass-produced, standardized, generalized and serialized. The accuracy of the turbine flowmeter for electrical pulse signal output is high, with a typical error of ±0.2% to 0.5%.
Differential pressure flowmeter (variable pressure drop flowmeter)
The differential pressure flowmeter consists of a primary device and a secondary device. The primary device is called a flow measuring element and is installed in the pipe of the fluid to be measured, generating a pressure difference proportional to the flow rate (flow rate) for the secondary device to display the flow rate. The secondary device is called a display instrument. It receives the differential pressure signal generated by the measuring component and converts it to the corresponding flow for display. The primary device of the differential pressure flow meter is often a throttling device or a dynamic pressure measuring device (piteron, constant velocity tube, etc.). The secondary device is equipped with various mechanical, electronic and combined differential pressure gauges with flow display instruments. The differential pressure sensitive components of the differential pressure gauge are mostly elastic components. Since the differential pressure and the flow rate are in a square root relationship, the flow display instrument is equipped with an open square device to linearize the flow scale. Most meters also have a flow accumulator to display cumulative flow for economic accounting. This method of measuring flow using differential pressure has a long history and is relatively mature. Generally, countries all over the world use it in more important occasions, accounting for about 70% of various flow measurement methods. The flow measurement of the main steam, feed water, condensate, etc. of the power plant is based on this meter.
Precautions
The correct selection of ultrasonic flowmeters can ensure better use of ultrasonic flowmeters. The type of ultrasonic flowmeter to be selected should be determined according to the physical properties and chemical properties of the fluid medium to be tested, so that the diameter, flow range, lining material, electrode material and output current of the ultrasonic flowmeter can be adapted to the properties of the fluid to be measured. And flow measurement requirements.
1, precision function check
Accuracy levels and functions are based on measurement requirements and usage scenarios to select instrument accuracy levels for cost-effectiveness. For example, in the case of trade settlement, product handover and energy measurement, the accuracy level should be higher, such as 1.0, 0.5, or higher; for process control, select different accuracy levels according to control requirements; It is to detect the process flow, no need to do precise control and measurement, you can choose a lower accuracy level, such as 1.5, 2.5, or even 4.0, then you can use a low-cost plug-in ultrasonic flowmeter.
2, measurable medium
Measuring medium flow rate, meter range and caliber When measuring a general medium, the full flow rate of the ultrasonic flow meter can be selected within the range of 0.5-12 m/s of the measured medium flow rate, and the range is relatively wide. The selection of the meter specification (caliber) is not necessarily the same as the process piping. It should be determined according to whether the measured flow range is within the flow rate range. That is, when the pipeline flow rate is too low to meet the requirements of the flow meter or the measurement accuracy is not guaranteed at this flow rate. It is necessary to reduce the gauge diameter, thereby increasing the flow rate inside the tube and obtaining satisfactory measurement results.