1. Measurements are not affected by changes in fluid density, viscosity, temperature, pressure, and conductivity;
2. There is no obstructed flow component in the measuring tube, no pressure loss, and the requirements of the straight pipe section are low. Unique adaptability to slurry measurement;
3. Reasonable selection of sensor lining and electrode materials, that is, good corrosion resistance and wear resistance;
4. The converter adopts novel excitation mode with low power consumption, stable zero point and high precision. The flow range can reach 150:1;
5. The converter can be integrated with the sensor or separated;
6. The converter adopts 16-bit high-performance microprocessor, 2x16LCD display, convenient parameter setting and reliable programming;
7. The flowmeter is a two-way measuring system with three totalizers: positive total, reverse total and total difference; can display positive and negative flow, and has multiple outputs: current, pulse, digital communication , HART;
8, the converter uses surface mount technology (SMT), with self-test and self-diagnosis function;
9. Measurement accuracy is not affected by changes in fluid density, viscosity, temperature, pressure and conductivity. The sensor induced voltage signal has a linear relationship with the average flow velocity, so the measurement accuracy is high.
10. There is no obstruction in the measuring pipe, so there is no additional pressure loss; there is no moving parts in the measuring pipe, so the life of the sensor is extremely long.
11. Since the induced voltage signal is formed in the entire space filled with the magnetic field and is the average value on the pipeline surface, the sensor requires a short straight pipe section and a pipe diameter of 5 times.
12. The converter adopts the latest and most advanced single-chip microcomputer (MCU) and surface mount technology (SMT) in the world. It has reliable performance, high precision, low power consumption, stable zero point and convenient parameter setting. Click on the Chinese display LCD to display the cumulative flow, instantaneous flow rate, flow rate, flow percentage, and more.
13, two-way measurement system, can measure forward flow, reverse flow. Special production technology and high-quality materials ensure that the performance of the product remains stable for a long time.
Vortex flowmeter analysis and solution
Summarizing the main causes of these problems, mainly related to the following aspects:
1. Problems with selection. Some vortex sensors are selected on the caliber selection or after the design selection, due to the change of process conditions, so that the selection is larger, the actual selection should be as small as possible to improve the measurement accuracy. The main reason for this is the same. Questions 1, 3, and 6 are related. For example, a vortex pipeline is designed for use by several equipment. Because some of the equipment is not used, the actual actual flow is reduced. The actual design results in too large an original design, which is equivalent to an increase in measurable flow. The lower limit, when the process pipe has a small flow rate, the indication cannot be guaranteed. When the flow rate is large, it can be used, because it is sometimes too difficult to re-engineer. Changes in process conditions are only temporary. The re-tuning of the parameters can be combined to improve the indication accuracy.
2. Installation problems. The main reason is that the length of the straight pipe in front of the sensor is not enough, which affects the measurement accuracy. The reason for this is mainly related to the problem 1. For example, the straight pipe section in front of the sensor is obviously insufficient. Since the FIC203 is not used for measurement, it is only used for control, so the current accuracy can be used equivalent to the downgrade.
Precautions
The correct selection of ultrasonic flowmeters can ensure better use of ultrasonic flowmeters. The type of ultrasonic flowmeter to be selected should be determined according to the physical properties and chemical properties of the fluid medium to be tested, so that the diameter, flow range, lining material, electrode material and output current of the ultrasonic flowmeter can be adapted to the properties of the fluid to be measured. And flow measurement requirements.
1, precision function check
Accuracy levels and functions are based on measurement requirements and usage scenarios to select instrument accuracy levels for cost-effectiveness. For example, in the case of trade settlement, product handover and energy measurement, the accuracy level should be higher, such as 1.0, 0.5, or higher; for process control, select different accuracy levels according to control requirements; It is to detect the process flow, no need to do precise control and measurement, you can choose a lower accuracy level, such as 1.5, 2.5, or even 4.0, then you can use a low-cost plug-in ultrasonic flowmeter.
2, measurable medium
Measuring medium flow rate, meter range and caliber When measuring a general medium, the full flow rate of the ultrasonic flow meter can be selected within the range of 0.5-12 m/s of the measured medium flow rate, and the range is relatively wide. The selection of the meter specification (caliber) is not necessarily the same as the process piping. It should be determined according to whether the measured flow range is within the flow rate range. That is, when the pipeline flow rate is too low to meet the requirements of the flow meter or the measurement accuracy is not guaranteed at this flow rate. It is necessary to reduce the gauge diameter, thereby increasing the flow rate inside the tube and obtaining satisfactory measurement results.