electromagnetic clean drinking water flow meter

2019-10-18 16:21:04

electromagnetic clean drinking water flow meter

Pipe flowmeter measurement method
Ultrasonic waves carry information about the fluid flow rate as they propagate through the flowing fluid. Therefore, the flow rate of the fluid can be detected by the received ultrasonic wave, and converted into a flow rate. According to the detection method, it can be divided into different types of ultrasonic flowmeters such as propagation velocity difference method, Doppler method, beam offset method, noise method and correlation method. Ultrasonic flowmeter is a kind of application that has been applied since the rapid development of integrated circuit technology in the past decade.
Non-contact instrument for measuring fluids that are difficult to access and observe, as well as large pipe runoff. It is linked to a water level gauge for flow measurement of open water flow. The use of ultrasonic flow rate does not change the flow state of the fluid without installing the measuring element in the fluid, and does not generate additional resistance. The installation and maintenance of the instrument can not affect the operation of the production pipeline and is an ideal energy-saving flowmeter.
As we all know, industrial flow measurement generally has the problem of large diameter and large flow measurement difficulty. This is because the general flowmeter will bring difficulties in manufacturing and transportation with the increase of the measuring pipe diameter, and the cost will increase and the energy loss will increase. Installation is not only a disadvantage, but ultrasonic flowmeters can be avoided.

electromagnetic clean drinking water flow meter

Ultrasonic flowmeter
The ultrasonic flowmeter is designed based on the geometrical principle that the velocity of the ultrasonic wave propagating in the flowing medium is equal to the average flow velocity of the measured medium and the velocity of the acoustic wave itself. It is also measured by the flow rate to reflect the flow rate. Although the ultrasonic flowmeter appeared only in the 1970s, it is very popular because it can be made into a non-contact type and can be connected to the ultrasonic water level gauge for opening flow measurement without disturbing or resisting the fluid. There are promising flow meters.
Ultrasonic Doppler flowmeters fabricated using the Doppler effect have received widespread attention in recent years and are considered to be ideal gauges for non-contact measurement of two-phase flow.
Fluid oscillating flowmeter
The fluid oscillating flowmeter is designed based on the principle that the fluid will oscillate when flowing under specific flow conditions, and the frequency of the oscillation is proportional to the flow velocity. When the flow cross section is constant, the flow rate is proportional to the flow volume of the pilot volume. Therefore, the flow rate can be measured by measuring the oscillation frequency. This flowmeter was developed and developed in the 1970s. Because it combines the advantages of non-rotating components and pulsed digital output, it has a promising future. At present, typical products include vortex flowmeters and spiral vortex flowmeters.

electromagnetic clean drinking water flow meter

Precautions
The correct selection of ultrasonic flowmeters can ensure better use of ultrasonic flowmeters. The type of ultrasonic flowmeter to be selected should be determined according to the physical properties and chemical properties of the fluid medium to be tested, so that the diameter, flow range, lining material, electrode material and output current of the ultrasonic flowmeter can be adapted to the properties of the fluid to be measured. And flow measurement requirements.
1, precision function check
Accuracy levels and functions are based on measurement requirements and usage scenarios to select instrument accuracy levels for cost-effectiveness. For example, in the case of trade settlement, product handover and energy measurement, the accuracy level should be higher, such as 1.0, 0.5, or higher; for process control, select different accuracy levels according to control requirements; It is to detect the process flow, no need to do precise control and measurement, you can choose a lower accuracy level, such as 1.5, 2.5, or even 4.0, then you can use a low-cost plug-in ultrasonic flowmeter.
2, measurable medium
Measuring medium flow rate, meter range and caliber When measuring a general medium, the full flow rate of the ultrasonic flow meter can be selected within the range of 0.5-12 m/s of the measured medium flow rate, and the range is relatively wide. The selection of the meter specification (caliber) is not necessarily the same as the process piping. It should be determined according to whether the measured flow range is within the flow rate range. That is, when the pipeline flow rate is too low to meet the requirements of the flow meter or the measurement accuracy is not guaranteed at this flow rate. It is necessary to reduce the gauge diameter, thereby increasing the flow rate inside the tube and obtaining satisfactory measurement results.