Teflon liner magnetic flowmeter sensor

2019-10-13 17:50:42

Teflon liner magnetic flowmeter sensor

Electromagnetic flowmeter features
Using intelligent judgment, the measurement correction setting is not used, and the air traffic control alarm and electrode detection application are more convenient;
Advanced "rough error handling" technology, which can remove fluids such as slurry to measure sharp disturbances, reduce output runout, maintain high precision measurement and make output more stable;
With a fluid density setting, it can display mass flow;
Constant current excitation current range, 125mA, 250mA optional, can be used with different manufacturers, different types of electromagnetic flow sensors;
Control function with remote reset of the totalizer, with contact signal input for starting and stopping accumulation, suitable for total inspection and batch processing applications;
With self-test and self-diagnosis function;
Advanced non-volatile memory for higher circuit reliability and effective protection of setup and measurement parameters;
The meter can be equipped with an unpowered clock and memory for recording the power down time, power-on time and power-down time;
The meter has an optional hour recording function that can store flow and electrode resistance measurements for more than 30 days.
The new keyboard processing method avoids the keyboard operation affecting the measurement, and can enter and return the operation menu to make the parameter setting more convenient;
The total display uses 10-bit decimal 9999999999 full-value carry, which solves the practice of double-word full value 4294967285 (hexadecimal FFFF) carry-in habit;
With wireless transmission, the mesh network is organized by the wireless HART protocol.

Teflon liner magnetic flowmeter sensor

Mass flow meter
Since the volume of the fluid is affected by parameters such as temperature and pressure, it is necessary to give the parameters of the medium when the flow rate is expressed by the volume flow. In the case of changing media parameters, it is often difficult to achieve this requirement, resulting in distortion of the meter display value. Therefore, mass flow meters have been widely used and valued. Mass flow meters are available in both direct and indirect versions. Direct mass flow meters are measured using principles directly related to mass flow. Currently used mass flow meters such as calorimetric, angular momentum, vibratory gyro, Magnus effect and Coriolis force. The indirect mass flow meter is obtained by directly multiplying the density meter by the volumetric flow rate to obtain the mass flow rate.
In modern industrial production, the operating parameters such as temperature and pressure of the flowing working fluid are continuously improved. In the case of high temperature and high pressure, due to the material and structure, the application of the direct mass flowmeter is difficult, and the indirect quality is encountered. Flowmeters are often not suitable for practical applications because they are limited by the range of humidity and pressure. Therefore, a temperature-pressure-compensated mass flowmeter is widely used in industrial production. It can be regarded as an indirect mass flow meter. Instead of using a density meter, it uses the relationship between temperature, pressure and density. It uses a temperature and pressure signal to calculate the density signal by function, and multiplies it by the volume flow. Mass Flow. At present, temperature and pressure-compensated mass flowmeters have been put into practical use. However, when the measured medium parameters vary widely or rapidly, it will be difficult or impossible to correctly compensate, so further study the mass flow rate applicable in actual production. Meters and densitometers are still a topic.
Chen's above-mentioned common structural principle of flowmeters is much better than various types of flowmeters, such as various helium flowmeters and trough flowmeters for open channel flow measurement; flowmeters suitable for large-caliber flow measurement; measuring laminar flow Laminar flowmeter; related flowmeter for two-phase flow measurement; and laser method, nuclear magnetic resonance flowmeter and various tracer methods, dilution method flow measurement, etc. With the development of technology and practical application needs, the new flowmeter will continue to emerge more types of flowmeters.

Teflon liner magnetic flowmeter sensor

Ultrasonic Flowmeter Introduction and Features
Definition:
Ultrasonic flow meters are meters that measure the flow by detecting the effect of fluid flow on the ultrasound beam (or ultrasound pulse).
Principle:
According to the principle of signal detection, ultrasonic flowmeter can be divided into propagation velocity difference method (direct time difference method, time difference method, phase difference method and frequency difference method), beam offset method, Doppler method, cross correlation method, spatial filtering method. And noise law, etc.
Ultrasonic flowmeter is the same as electromagnetic flowmeter. It is an unobstructed flowmeter because it does not have any obstruction parts. It is a kind of flowmeter suitable for solving difficult flow measurement problems, especially in large-diameter flow measurement. The advantage is that it is one of the fastest growing types of flow meters.
Features:
Unique signal digital processing technology makes the meter measurement signal more stable, anti-interference ability and more accurate measurement.
No mechanical transmission parts are not easy to damage, maintenance-free and long life.
The circuit is more optimized and integrated; the power consumption is low and the reliability is high.
Intelligent standard signal output, friendly man-machine interface, multiple secondary signal output, for you to choose.
Pipe-type small pipe diameter measurement is economical and convenient, and the measurement accuracy is high.