Ultrasonic flowmeter features
The unique signal digitization processing technology makes the meter measurement signal more stable, anti-interference ability and more accurate measurement.
No mechanical transmission parts are not easily damaged, maintenance-free and have a long service life.
The circuit is more optimized, with high integration, low power consumption and high reliability.
Intelligent standard signal output, friendly man-machine interface, multiple secondary signal output, for you to choose.
Pipe-section small pipe diameter measurement is economical and convenient, and the measurement accuracy is high.
Detailed installation of ultrasonic flowmeter
Ultrasonic flowmeters should be aware of the site prior to installation, including:
1. What is the distance from the host at the installation of the sensor;
2. Pipe material, pipe wall thickness and pipe diameter;
3. Years of pipeline;
4. The type of fluid, whether it contains impurities, bubbles and whether it is full;
5. Fluid temperature;
6. Whether there is interference source at the installation site (such as frequency conversion, strong magnetic field, etc.);
7. Four seasons temperature at the host place;
8. Whether the power supply voltage used is stable;
9. Do you need remote signals and types;
According to the site conditions provided above, the manufacturer can configure the site conditions and, if necessary, special models.
Impulse flowmeter
The flowmeter weighing impulse flowmeter that measures the flow using the impulse theorem is used to measure the flow rate of the granular solid medium, and is also used to measure the flow rate of the mud, the crystalline liquid, and the abrasive. Flow measurement ranges from a few kilograms per hour to nearly 10,000 tons. The typical instrument is a horizontal force-separated impulse flowmeter. The measurement principle is that when the measured medium falls freely from a certain height h to a detection plate with a tilt angle, an impulse is generated, and the horizontal force component of the impulse is proportional to the mass flow rate. Measuring this horizontal component can reflect the mass flow.
Electromagnetic flowmeter
The electromagnetic flowmeter is made by applying the electric conductor to generate an induced electromotive force in a magnetic field, and the induced electromotive force is proportional to the flow rate, and is measured by measuring the electromotive force to reflect the flow of the pipeline. Its measurement accuracy and sensitivity are high. Industrially used to measure the flow of water, slurry and other media. The maximum diameter can be measured up to 2m, and the pressure loss is extremely small. However, media with low conductivity, such as gas and steam, cannot be used.
The electromagnetic flowmeter has a high cost, and the signal is susceptible to external magnetic field interference, which affects the wide application in industrial tube flow measurement. To this end, the product is constantly improving and updating, to the development of computer.
The V-cone flowmeter is a new generation of differential pressure flow measuring instrument. In practical use, many factors have a great influence on the measurement accuracy of the differential pressure flowmeter, which increases the measurement error and reduces the accuracy.
The specific performance is as follows:
1) the design parameters are inconsistent with the working parameters;
2) there is no temperature compensation or compensation is incorrect;
3) the length of the upper and lower straight pipes is insufficient;
4) the cones and pipes are not concentric;
5) the pressure pipes Blockage, etc.
After on-site inspection, the shortage of straight pipe sections, disagreement, and blockage of the pressure guiding pipe can be ruled out.
The differential pressure transmitter is removed for verification, the transmitter is qualified, and the error is within the allowable range.
The technicians recalled the trend record of DCS preservation, and looked at the steam temperature and pressure recording curve. The temperature was between 120 °C and 150 °C, the pressure was between 0.3MPa and 0.6MPa, and the measured temperature and pressure deviated from the design value. The design parameter was temperature. 193 ° C, pressure 1.13 MPa). At the same time, the DCS configuration was viewed and it was found that there was no temperature and pressure compensation for the steam flow in the configuration.