Measuring principle of electromagnetic flowmeter
The principle of electromagnetic flowmeter measurement is based on Faraday's law of electromagnetic induction. The measuring tube of the flow meter is a non-magnetic alloy short tube lined with an insulating material. The two electrodes are fixed to the measuring tube through the tube wall in the tube diameter direction. The electrode tip is substantially flush with the inner surface of the liner. When the exciting coil is excited by the bidirectional square wave pulse, a working magnetic field having a magnetic flux density B is generated in a direction perpendicular to the axis of the measuring tube. At this time, if the fluid having a certain conductivity passes through the measuring tube, the cutting magnetic line induces the electromotive force E. The electromotive force E is proportional to the product of the magnetic flux density B, the inner diameter D of the measuring tube and the average velocity V. The electromotive force E (flow signal) is detected by the electrode and sent to the converter through the cable. After the converter amplifies the flow signal, it can display the fluid flow, and can output signals such as pulse and analog current for flow control and regulation.
Vortex flowmeter analysis and solution
6. The connection problem between the secondary instrument and the subsequent instrument. Due to the problem of the subsequent instrument or the maintenance of the subsequent instrument, the mA output circuit of the secondary instrument is interrupted. For this type of secondary instrument, this part is mainly related to the problem 2. Especially for the subsequent recorders, in the case that the recorder cannot be repaired for a long time, it is necessary to pay attention to shorting the output of the secondary meter.
7. The circuit always has no indication due to the failure of the secondary instrument flat-axle cable. Due to long-term operation, coupled with the influence of dust, the flat-axle cable is faulty, and the problem can be solved by cleaning or replacing the flat-axis cable.
8. For the problem 7, the main problem is that the secondary instrument shows that the fixing screw of the meter head is loose, causing the head to sink, the pointer and the case friction are large, the movement is not working, and the problem is solved by adjusting the meter head and re-fixing.
9. Use environmental issues. In particular, the sensor part installed in the well is affected by the humidity of the environment, which causes the circuit board to be damp. This part is mainly related to questions 2 and 2. Through the corresponding technical improvement measures, the sensor part with large humidity is re-separated from the probe part and the conversion part, and the separate type sensor is used. Therefore, the working environment is good, and the instrument has been running well.
10. Due to the poor adjustment of the site, or due to the actual situation after the adjustment. Due to the on-site vibration and noise balance adjustment and sensitivity adjustment is not good. Or because of the re-allocation of the situation after a period of operation after the adjustment, causing the indication problem, this part of the reason is mainly related to questions 4 and 5. Use an oscilloscope, plus the combined process operation, and re-adjust.
The V-cone flowmeter is a new generation of differential pressure flow measuring instrument. In practical use, many factors have a great influence on the measurement accuracy of the differential pressure flowmeter, which increases the measurement error and reduces the accuracy.
The specific performance is as follows:
1) the design parameters are inconsistent with the working parameters;
2) there is no temperature compensation or compensation is incorrect;
3) the length of the upper and lower straight pipes is insufficient;
4) the cones and pipes are not concentric;
5) the pressure pipes Blockage, etc.
After on-site inspection, the shortage of straight pipe sections, disagreement, and blockage of the pressure guiding pipe can be ruled out.
The differential pressure transmitter is removed for verification, the transmitter is qualified, and the error is within the allowable range.
The technicians recalled the trend record of DCS preservation, and looked at the steam temperature and pressure recording curve. The temperature was between 120 °C and 150 °C, the pressure was between 0.3MPa and 0.6MPa, and the measured temperature and pressure deviated from the design value. The design parameter was temperature. 193 ° C, pressure 1.13 MPa). At the same time, the DCS configuration was viewed and it was found that there was no temperature and pressure compensation for the steam flow in the configuration.