Measuring principle of electromagnetic flowmeter
The principle of electromagnetic flowmeter measurement is based on Faraday's law of electromagnetic induction. The measuring tube of the flow meter is a non-magnetic alloy short tube lined with an insulating material. The two electrodes are fixed to the measuring tube through the tube wall in the tube diameter direction. The electrode tip is substantially flush with the inner surface of the liner. When the exciting coil is excited by the bidirectional square wave pulse, a working magnetic field having a magnetic flux density B is generated in a direction perpendicular to the axis of the measuring tube. At this time, if the fluid having a certain conductivity passes through the measuring tube, the cutting magnetic line induces the electromotive force E. The electromotive force E is proportional to the product of the magnetic flux density B, the inner diameter D of the measuring tube and the average velocity V. The electromotive force E (flow signal) is detected by the electrode and sent to the converter through the cable. After the converter amplifies the flow signal, it can display the fluid flow, and can output signals such as pulse and analog current for flow control and regulation.
Vortex flowmeter analysis and solution
3. Reasons for parameter setting direction. The instrument is incorrectly indicated due to a parameter error. The parameter error makes the secondary meter full frequency calculation error, and the reason for this is mainly related to questions 1 and 3. The full-scale frequency is similar, indicating that the long-term inaccuracy is indicated. The full-scale frequency of the actual full-scale frequency and large-dry calculation indicates that the range is fluctuating and cannot be read. The inconsistency of the parameters on the data affects the final determination of the parameters, and finally passes. Recalibration combined with mutual comparison to determine the parameters solves this problem.
4. The secondary instrument is faulty. There are many faults in this part, including: when the instrument board is disconnected, the range setting has individual bit display bad, and the K coefficient setting has individual bit display bad, which makes it impossible to determine the range setting and K factor setting. Part of the reason is mainly related to questions 1, 2. The problem is solved by fixing the corresponding fault.
5, Four-way line connection problem. On the surface of some circuits, the line connection is very good. Check carefully. Some connectors are actually loose and the circuit is interrupted. Some connectors are tightly connected, but the fastening screws are fastened to the wire due to the secondary line problem. Interruption, this part of the reason is mainly related to question.
Several problems of steam metering and their solutions
Steam is one of the important energy sources for enterprise production. It is the main heat energy for urban central heating and an important indicator for economic accounting. Therefore, the accuracy of steam metering is particularly important.
In order to solve the problem of heating for employees, the company has updated the original boiler equipment, adding 4 new boilers (2 sets of 25t/h, and another 2 sets of 35t/h). The DCS realizes the automatic control of the boiler system, and the product is saturated steam.
Analysis of problems and influencing factors
Starting from the boiler ignition operation in November 2010, the steam flow often shows the maximum value, and the differential pressure signal measured by the differential pressure transmitter exceeds 20 mA. The same is true when the load is low and the actual flow is small. In this case, steam flow measurement does not provide a safety reference for boiler operation, and it cannot be used for cost accounting.
In response to this phenomenon, the design of the project uses a V-cone flowmeter, equipped with an intelligent differential pressure transmitter, and the measurement signal is sent to the DCS for calculation and display.