Pipe flowmeter measurement method
Ultrasonic waves carry information about the fluid flow rate as they propagate through the flowing fluid. Therefore, the flow rate of the fluid can be detected by the received ultrasonic wave, and converted into a flow rate. According to the detection method, it can be divided into different types of ultrasonic flowmeters such as propagation velocity difference method, Doppler method, beam offset method, noise method and correlation method. Ultrasonic flowmeter is a kind of application that has been applied since the rapid development of integrated circuit technology in the past decade.
Non-contact instrument for measuring fluids that are difficult to access and observe, as well as large pipe runoff. It is linked to a water level gauge for flow measurement of open water flow. The use of ultrasonic flow rate does not change the flow state of the fluid without installing the measuring element in the fluid, and does not generate additional resistance. The installation and maintenance of the instrument can not affect the operation of the production pipeline and is an ideal energy-saving flowmeter.
As we all know, industrial flow measurement generally has the problem of large diameter and large flow measurement difficulty. This is because the general flowmeter will bring difficulties in manufacturing and transportation with the increase of the measuring pipe diameter, and the cost will increase and the energy loss will increase. Installation is not only a disadvantage, but ultrasonic flowmeters can be avoided.
Several problems of steam metering and their solutions
Steam is one of the important energy sources for enterprise production. It is the main heat energy for urban central heating and an important indicator for economic accounting. Therefore, the accuracy of steam metering is particularly important.
In order to solve the problem of heating for employees, the company has updated the original boiler equipment, adding 4 new boilers (2 sets of 25t/h, and another 2 sets of 35t/h). The DCS realizes the automatic control of the boiler system, and the product is saturated steam.
Analysis of problems and influencing factors
Starting from the boiler ignition operation in November 2010, the steam flow often shows the maximum value, and the differential pressure signal measured by the differential pressure transmitter exceeds 20 mA. The same is true when the load is low and the actual flow is small. In this case, steam flow measurement does not provide a safety reference for boiler operation, and it cannot be used for cost accounting.
In response to this phenomenon, the design of the project uses a V-cone flowmeter, equipped with an intelligent differential pressure transmitter, and the measurement signal is sent to the DCS for calculation and display.
Several problems of solutions
Recalculating the differential pressure scale
Temperature and pressure compensation can only reduce the measurement error, not only can not solve the problem fundamentally, but also the measurement signal exceeds 20mA, resulting in steam leakage measurement. The transmitter measurement signal exceeds 20 mA, indicating that the actual measured differential pressure signal ΔP exceeds the design differential pressure value.
Increase temperature and pressure compensation
When the temperature and pressure of the steam change, the density of the steam changes, and the steam flow measurement produces an error. Measurement error can be reduced by temperature and pressure compensation. Since the temperature of the saturated steam is a single-valued function of the pressure, the temperature and pressure compensation of the saturated steam can be pressure compensated or temperature compensated. Because the pressure signal detection is sensitive and the compensation accuracy is high, it is compensated by pressure and realized by DCS.
Conclusion
Steam is a special medium. As the pressure and temperature change, the density of steam changes. Therefore, it is necessary to compensate for temperature and pressure. When the pressure and temperature fluctuation of the steam are not large, that is, when the operating condition parameters deviate from the design parameters and the influence on the measurement is small, the temperature and pressure compensation measures can achieve the purpose of accurate measurement. However, when the operating parameters deviate too much from the design parameters or the operating parameters fluctuate frequently and are too large, even with the temperature and pressure compensation, it is difficult to meet the measurement accuracy requirements. At this point, only differential pressure or flow can be recalculated for a particular throttling element.