Instruments that measure fluid flow are collectively referred to as flow meters or flow meters. The flowmeter is one of the important instruments in industrial measurement. With the development of industrial production, the accuracy and range of flow measurement requirements are getting higher and higher, and the flow measurement technology is changing with each passing day. Various types of flow meters have been introduced to suit various applications. More than 100 flow meters have been put into use. From different perspectives, flow meters have different classification methods. There are two commonly used classification methods. One is to classify according to the measurement principle adopted by the flowmeter: the second is to classify according to the structural principle of the flowmeter.
Sort by measurement principle
a. Mechanical principle:
Instruments belonging to such principles have differential pressure type, rotor type using Bernoulli's theorem;
Impulse type using the momentum theorem, movable tube type;
Direct mass equation using Newton's second law;
a target using the principle of fluid momentum;
Turbine using the angular momentum theorem;
Vortex type using vortex principle of fluid oscillation;
Use the total static pressure difference of the pitot tube type as well as volumetric and sputum, trough and so on.
b. Electrical principle:
Electromagnetic,
Differential capacitor type,
Inductive,
Strain resistance type, etc.
c. Acoustic principle:
Ultrasonic.
d. Thermal principles:
Thermal type,
Direct calorimetry,
Indirect calorimetry and so on.
Vortex flowmeter installation requirements for straight pipe sections:
It is very important that the vortex flowmeter installation meets the requirements for straight pipe sections. Its detailed requirements are as follows:
The flowmeter has certain requirements on the upstream and downstream straight pipe sections at the installation point, otherwise it will affect the measurement accuracy.
If there is a tapered pipe upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 15D (D is the pipe diameter) upstream of the flowmeter, and a straight pipe section of not less than 5D in the downstream.
If there is a diverging pipe upstream of the installation point of the flowmeter, the upstream of the flowmeter shall have a straight pipe section of not less than 18D (D is the pipe diameter), and the downstream shall have a straight pipe section of not less than 5D.
If there is a 90° elbow or down joint upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 20D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
If there is a 90° elbow on the same plane upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 25D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
The flow regulating valve or pressure regulating valve should be installed as far as possible downstream of the flowmeter 5D. If it must be installed upstream of the flowmeter, the upstream of the flowmeter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D. .
If there is a piston type or plunger type pump in the upstream of the flow meter, a piston type or a Roots type fan and a compressor, the upstream of the flow meter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D.
Special attention: If the valve is installed near the upstream of the installation point of the vortex flowmeter, the valve is continuously opened and closed, which has a great influence on the service life of the flowmeter, and it is very easy to cause permanent damage to the flowmeter. The flowmeter should be avoided to be installed on the very long pipelines in overhead. After a long time, the leakage of the flowmeter can easily cause the leakage of the flowmeter to the flange. If it has to be installed, it must be in the upstream and downstream of the flowmeter. Pipe fastening devices are provided separately.
Impulse flowmeter
The flowmeter weighing impulse flowmeter that measures the flow using the impulse theorem is used to measure the flow rate of the granular solid medium, and is also used to measure the flow rate of the mud, the crystalline liquid, and the abrasive. Flow measurement ranges from a few kilograms per hour to nearly 10,000 tons. The typical instrument is a horizontal force-separated impulse flowmeter. The measurement principle is that when the measured medium falls freely from a certain height h to a detection plate with a tilt angle, an impulse is generated, and the horizontal force component of the impulse is proportional to the mass flow rate. Measuring this horizontal component can reflect the mass flow.
Electromagnetic flowmeter
The electromagnetic flowmeter is made by applying the electric conductor to generate an induced electromotive force in a magnetic field, and the induced electromotive force is proportional to the flow rate, and is measured by measuring the electromotive force to reflect the flow of the pipeline. Its measurement accuracy and sensitivity are high. Industrially used to measure the flow of water, slurry and other media. The maximum diameter can be measured up to 2m, and the pressure loss is extremely small. However, media with low conductivity, such as gas and steam, cannot be used.
The electromagnetic flowmeter has a high cost, and the signal is susceptible to external magnetic field interference, which affects the wide application in industrial tube flow measurement. To this end, the product is constantly improving and updating, to the development of computer.