The choice of electromagnetic flowmeter is mainly the correct choice of the transmitter, and the converter only needs to be matched with it.
Choice of caliber and range
The diameter of the transmitter is usually the same as that of the piping system. If the piping system is to be designed, the diameter can be selected according to the flow range and flow rate. For electromagnetic flowmeters, the flow rate is suitable for 2 - 4m / s. In special cases, such as solid particles in the liquid, in consideration of wear, the optional flow rate is ≤ 3m / s, for easy to manage the fluid. Available flow rate ≥ 2m / s. After the flow rate is determined, the transmitter diameter can be determined according to qv= D2.
The range of the transmitter can be selected according to two principles: one is that the full scale of the meter is greater than the expected maximum flow value; the other is that the normal flow is greater than 50% of the full scale of the meter to ensure a certain measurement accuracy.
Temperature and pressure selection
There are certain restrictions on the fluid pressure and temperature that the electromagnetic flowmeter can measure. When used, the pressure used must be lower than the working pressure specified by the flowmeter. At present, the working pressure specifications of domestically produced electromagnetic flowmeters are:
Less than 50mm caliber, working pressure is 1.6MPa; 900 mm caliber, working pressure is 1 MPa;More than 1000mm caliber, working pressure is 0.6MPa.
If there are special requirements on the pressure resistance of the transmitter, you can negotiate with the manufacturer.
The operating temperature of the electromagnetic flowmeter depends on the lining material used, which is generally 5 - 70 ° C. Such as special treatment, can exceed the above range, such as the wear-resistant corrosion-resistant electromagnetic flowmeter produced by Tianjin Automation Instrument No.3. The transmitter allows the measured medium temperature to be -40 to 130 °C.
Selection of lining material and electrode tree material
The lining material and electrode material of the transmitter must be correctly selected according to the physical and chemical properties of the medium. Otherwise, the instrument will be damaged quickly due to the corrosion of the lining and the electrode, and the corrosive medium will easily cause an accident if it leaks. Therefore, the electrode and the lining material must be carefully selected according to the specific measurement medium in the production process.
Vortex flowmeter analysis and solution
Summarizing the main causes of these problems, mainly related to the following aspects:
1. Problems with selection. Some vortex sensors are selected on the caliber selection or after the design selection, due to the change of process conditions, so that the selection is larger, the actual selection should be as small as possible to improve the measurement accuracy. The main reason for this is the same. Questions 1, 3, and 6 are related. For example, a vortex pipeline is designed for use by several equipment. Because some of the equipment is not used, the actual actual flow is reduced. The actual design results in too large an original design, which is equivalent to an increase in measurable flow. The lower limit, when the process pipe has a small flow rate, the indication cannot be guaranteed. When the flow rate is large, it can be used, because it is sometimes too difficult to re-engineer. Changes in process conditions are only temporary. The re-tuning of the parameters can be combined to improve the indication accuracy.
2. Installation problems. The main reason is that the length of the straight pipe in front of the sensor is not enough, which affects the measurement accuracy. The reason for this is mainly related to the problem 1. For example, the straight pipe section in front of the sensor is obviously insufficient. Since the FIC203 is not used for measurement, it is only used for control, so the current accuracy can be used equivalent to the downgrade.
Variable area flowmeter (equal pressure drop flowmeter)
The float placed in the upper and lower small tapered flow passages is moved by the force of the fluid flowing from the bottom to the top. When this force is balanced with the "display weight" of the float (the weight of the float itself minus the buoyancy of the fluid it receives), the capture is stationary. The height at which the float is stationary can be used as a measure of the flow rate. Since the cross-sectional area of ??the flowmeter varies with the height of the float, and the pressure difference between the upper and lower parts is equal when the float is stationary, the flowmeter is called a variable area flowmeter or an equal pressure dropmeter. A typical instrument of this type of flow meter is a rotor (float) flow meter.
Momentum flowmeter
A flowmeter weighing flowmeter that uses the momentum of a measuring fluid to reflect the flow rate. Since the momentum P of the flowing fluid is proportional to the density of the fluid and the square of the flow velocity v, i.e., p v2 , when the flow cross section is determined, v is proportional to the volumetric flow rate Q, so p Q2 . Set the proportional coefficient to A, then Q=A. Therefore, P is measured to reflect the flow rate Q. In this type of flowmeter, most of the flowmeters are used to convert momentum into pressure, displacement or force, and then the flow rate is measured. Typical meters for such flow meters are target and rotary wing flow meters.