Choice of protection level
The protection level of the electromagnetic flowmeter should be selected according to the actual situation. If the sensor is required to be installed below the ground and is often flooded, IP68 should be selected. If the sensor is installed above the ground, IP65 and IP67 should be selected. In any case, the display area of ??the electromagnetic flowmeter cannot be used with water or enter the water, which may cause damage to the electromagnetic flowmeter. As a chemical company, the workshop produces high humidity, but IP65 (IP65 is a water-proof type. The electromagnetic flowmeter sensor housing allows the faucet to spray water from the sensor in any direction of the sensor of the electromagnetic flowmeter. The pressure of the water spray is 30Kpa, the water output It is 12.5L/S and the distance is 3 meters.) The electromagnetic flowmeter of the protection grade fully meets the requirements of on-site measurement.
Choice of connection method
Electromagnetic flowmeters have threaded connections, flanged connections, clamps, etc. In the chemical industry, flange-connected electromagnetic flowmeters are generally used. The selection must be consistent with the process-flange engineering pressure and standards.
Conclusion, with the maturity of the domestic instrument industry, chemical companies such as lithium carbonate, boric acid and potash will also enter the market in line with the domestic market. As an important industrial flow measuring instrument, electromagnetic flowmeter should play its role in DCS control. The right selection is especially important to provide accurate measurement data, reduce labor costs and increase production efficiency.
Vortex flowmeter common fault
1. The measurement range of the vortex flowmeter is large, generally 10:1, but the lower limit of measurement is limited by many factors: Re>10000 is the most basic condition for the operation of the vortex flowmeter. In addition, it is also responded by the vortex. The signal, the vortex frequency f is also small, and it also makes signal processing difficult. The upper limit of measurement is the frequency response of the sensor and the frequency limit of the circuit. Therefore, the flow rate range must be calculated and calculated according to the flow rate of the fluid. The environmental conditions on the site are complicated. In addition to the conditions such as ambient temperature, humidity, and atmosphere, electromagnetic interference should also be considered.
2, vibration is also a big enemy of this type of instrument. Therefore, care should be taken to avoid mechanical vibrations, especially the lateral vibration of the pipe (perpendicular to the pipe axis and the vertical vortex generating body axis). This effect cannot be suppressed and eliminated in the design of the flowmeter structure. Since the vortex signal is equally sensitive to the influence of the flow field, it is not suitable for the length of the straight pipe section to ensure the flow conditions necessary for stabilizing the vortex street. Even the capacitive and ultrasonic type with strong anti-vibration performance guarantees that the fluid is a fully developed one-way flow, which is not negligible.
The medium temperature also has a great influence on the performance of the vortex flowmeter. For example, the pressure stress type vortex flowmeter cannot be used for a long time at 300 °C, because its insulation resistance is rapidly reduced from 10-100 MΩ at normal temperature to 1-101 Ω, and the output signal is also small, resulting in deterioration of measurement characteristics. In the measurement system, the sensor and the converter should be installed separately to avoid long-term high temperature affecting the reliability and service life of the instrument. The vortex flowmeter is a relatively new type of flowmeter. It is in the development stage and is not very mature. If it is not properly selected, the performance will not work well. Only after reasonable selection and correct installation, it is necessary to carefully and regularly maintain during the use process, accumulate experience, improve the predictability of system failure and the ability to judge and deal with problems, so as to achieve satisfactory results.
The working principle of the impeller type flowmeter is that the impeller is placed in the fluid to be measured, and is rotated by the impact of the fluid flow, and the flow rate is reflected by the speed of the impeller rotation. Typical impeller flow meters are water meters and turbine flow meters, which may be of mechanical transmission output or electrical pulse output. Generally, the water meter output of the mechanical transmission has low accuracy and the error is about ±2%, but the structure is simple and the cost is low. The domestic production has been mass-produced, standardized, generalized and serialized. The accuracy of the turbine flowmeter for electrical pulse signal output is high, with a typical error of ±0.2% to 0.5%.
Differential pressure flowmeter (variable pressure drop flowmeter)
The differential pressure flowmeter consists of a primary device and a secondary device. The primary device is called a flow measuring element and is installed in the pipe of the fluid to be measured, generating a pressure difference proportional to the flow rate (flow rate) for the secondary device to display the flow rate. The secondary device is called a display instrument. It receives the differential pressure signal generated by the measuring component and converts it to the corresponding flow for display. The primary device of the differential pressure flow meter is often a throttling device or a dynamic pressure measuring device (piteron, constant velocity tube, etc.). The secondary device is equipped with various mechanical, electronic and combined differential pressure gauges with flow display instruments. The differential pressure sensitive components of the differential pressure gauge are mostly elastic components. Since the differential pressure and the flow rate are in a square root relationship, the flow display instrument is equipped with an open square device to linearize the flow scale. Most meters also have a flow accumulator to display cumulative flow for economic accounting. This method of measuring flow using differential pressure has a long history and is relatively mature. Generally, countries all over the world use it in more important occasions, accounting for about 70% of various flow measurement methods. The flow measurement of the main steam, feed water, condensate, etc. of the power plant is based on this meter.