Plug-in ultrasonic flowmeter features
Programmable frequency low frequency rectangular wave excitation improves stability of flow measurement and low power loss;
Using 16-bit embedded microprocessor, the operation speed is fast and the precision is high;
Full digital processing, strong anti-interference ability, reliable measurement, high precision, flow measurement range up to 100:1;
Ultra-low EMI switching power supply, suitable for wide range of power supply voltage and good anti-EMC performance;
Full Chinese character menu operation, easy to use, easy to operate, easy to learn and understand;
High definition backlit LCD display;
It has two-way flow measurement and two-way total accumulation function, and the current and frequency have bidirectional output function;
There are three totalizers in the internal to display the forward cumulative amount, the reverse cumulative amount and the difference integrated amount;
With RS485 or RS232 digital communication signal output
It has a conductivity measurement function to determine whether the sensor is empty or not;
The constant current excitation current range is large, and can be used with different companies and different types of electromagnetic flow sensors;
With self-test and self-diagnosis function;
High reliability with SMD devices and surface mount (SMT) technology;
The internal design of the meter has a power-down clock that can record 16 power-down times.
Vortex flowmeter analysis and solution
3. Reasons for parameter setting direction. The instrument is incorrectly indicated due to a parameter error. The parameter error makes the secondary meter full frequency calculation error, and the reason for this is mainly related to questions 1 and 3. The full-scale frequency is similar, indicating that the long-term inaccuracy is indicated. The full-scale frequency of the actual full-scale frequency and large-dry calculation indicates that the range is fluctuating and cannot be read. The inconsistency of the parameters on the data affects the final determination of the parameters, and finally passes. Recalibration combined with mutual comparison to determine the parameters solves this problem.
4. The secondary instrument is faulty. There are many faults in this part, including: when the instrument board is disconnected, the range setting has individual bit display bad, and the K coefficient setting has individual bit display bad, which makes it impossible to determine the range setting and K factor setting. Part of the reason is mainly related to questions 1, 2. The problem is solved by fixing the corresponding fault.
5, Four-way line connection problem. On the surface of some circuits, the line connection is very good. Check carefully. Some connectors are actually loose and the circuit is interrupted. Some connectors are tightly connected, but the fastening screws are fastened to the wire due to the secondary line problem. Interruption, this part of the reason is mainly related to question.
The working principle of the impeller type flowmeter is that the impeller is placed in the fluid to be measured, and is rotated by the impact of the fluid flow, and the flow rate is reflected by the speed of the impeller rotation. Typical impeller flow meters are water meters and turbine flow meters, which may be of mechanical transmission output or electrical pulse output. Generally, the water meter output of the mechanical transmission has low accuracy and the error is about ±2%, but the structure is simple and the cost is low. The domestic production has been mass-produced, standardized, generalized and serialized. The accuracy of the turbine flowmeter for electrical pulse signal output is high, with a typical error of ±0.2% to 0.5%.
Differential pressure flowmeter (variable pressure drop flowmeter)
The differential pressure flowmeter consists of a primary device and a secondary device. The primary device is called a flow measuring element and is installed in the pipe of the fluid to be measured, generating a pressure difference proportional to the flow rate (flow rate) for the secondary device to display the flow rate. The secondary device is called a display instrument. It receives the differential pressure signal generated by the measuring component and converts it to the corresponding flow for display. The primary device of the differential pressure flow meter is often a throttling device or a dynamic pressure measuring device (piteron, constant velocity tube, etc.). The secondary device is equipped with various mechanical, electronic and combined differential pressure gauges with flow display instruments. The differential pressure sensitive components of the differential pressure gauge are mostly elastic components. Since the differential pressure and the flow rate are in a square root relationship, the flow display instrument is equipped with an open square device to linearize the flow scale. Most meters also have a flow accumulator to display cumulative flow for economic accounting. This method of measuring flow using differential pressure has a long history and is relatively mature. Generally, countries all over the world use it in more important occasions, accounting for about 70% of various flow measurement methods. The flow measurement of the main steam, feed water, condensate, etc. of the power plant is based on this meter.