Pipe flowmeter measurement method
Ultrasonic waves carry information about the fluid flow rate as they propagate through the flowing fluid. Therefore, the flow rate of the fluid can be detected by the received ultrasonic wave, and converted into a flow rate. According to the detection method, it can be divided into different types of ultrasonic flowmeters such as propagation velocity difference method, Doppler method, beam offset method, noise method and correlation method. Ultrasonic flowmeter is a kind of application that has been applied since the rapid development of integrated circuit technology in the past decade.
Non-contact instrument for measuring fluids that are difficult to access and observe, as well as large pipe runoff. It is linked to a water level gauge for flow measurement of open water flow. The use of ultrasonic flow rate does not change the flow state of the fluid without installing the measuring element in the fluid, and does not generate additional resistance. The installation and maintenance of the instrument can not affect the operation of the production pipeline and is an ideal energy-saving flowmeter.
As we all know, industrial flow measurement generally has the problem of large diameter and large flow measurement difficulty. This is because the general flowmeter will bring difficulties in manufacturing and transportation with the increase of the measuring pipe diameter, and the cost will increase and the energy loss will increase. Installation is not only a disadvantage, but ultrasonic flowmeters can be avoided.
Vortex flowmeter installation method
1. The vortex flowmeter can only be measured in one direction. The installation should pay attention to ensure that the direction of the medium flow is consistent with the direction indicated by the flowmeter arrow.
2. The best installation method of the vortex flowmeter is vertical installation, and the medium passes through the flowmeter from bottom to top. Install the flowmeter on a vertical pipe with the flow direction from bottom to top.
3. When installing horizontally, the flowmeter must be installed in the high pressure zone of the whole system and ensure the corresponding outlet pressure; do not install at the highest point of the pipeline, because the highest point is often gas accumulation, the pipeline is not full, and the outlet cannot be directly emptied.
4. When measuring high temperature fluid, try to use vertical installation; if you have to install horizontally, please install the transmitter part of the flowmeter vertically downwards or horizontally to avoid excessive temperature; pay attention to air flow at installation location Or well ventilated.
5. Straight pipe section requirements: at least 15 times the pipe diameter before the flow meter and 5 times the pipe diameter after the flow meter. If there are elbows, indents, expansions and other sources of interference in front of the flowmeter, the diameter of the flowmeter should be 30–40 times, and the diameter of the flowmeter should be 6 times. The flow meter should be installed upstream of the regulator valve, pressure or temperature sensor.
6. When installing, pay attention to the pipe diameter should be slightly larger than or equal to the inner diameter of the instrument.
7. When using the sealing ring, the inner diameter of the sealing ring should be slightly larger than or equal to the inner diameter of the instrument, and the center of the sealing ring is at the center of the pipe.
Flow meter type
Instruments that measure fluid flow are collectively referred to as flow meters or flow meters. The flowmeter is one of the important instruments in industrial measurement. With the development of industrial production, the accuracy and range of flow measurement requirements are getting higher and higher, and the flow measurement technology is changing with each passing day. Various types of flow meters have been introduced to suit various applications. More than 100 flow meters have been put into use. From different perspectives, flow meters have different classification methods. There are two commonly used classification methods. One is to classify according to the measurement principle adopted by the flowmeter: the second is to classify according to the structural principle of the flowmeter.
Classified by flowmeter structure principle
Volumetric flowmeter
A volumetric flow meter is equivalent to a standard volume container that measures the flow medium continuously. The larger the traffic, the more times the metric is, and the higher the frequency of the output. The principle of the volumetric flowmeter is relatively simple and suitable for measuring fluids with high viscosity and low Reynolds number. According to the shape of the rotary body, the products currently produced are: an oval gear flow meter suitable for measuring liquid flow, a lumbar flowmeter (Roots flowmeter), a rotary piston and a scraper flowmeter; a servo type suitable for measuring gas flow Volumetric flowmeters, membranes and flowmeters, etc.