Electrode: Its function is to extract and induce a proportional induced inductive potential signal. The electrodes are typically made of non-magnetically conductive stainless steel and are required to be flush with the liner so that the fluid passes unimpeded. It should be installed in the vertical direction of the pipe to prevent deposits from accumulating on it and affecting the measurement accuracy.
Enclosure: Made of ferromagnetic material, it is the cover of the distribution system excitation coil and isolates the interference of external magnetic field.
Lining: A complete electrical insulation lining on the inside of the measuring tube and on the flange sealing surface. It directly contacts the liquid to be measured, and its function is to increase the corrosion resistance of the measuring catheter and prevent the induced potential from being short-circuited by the metal measuring tube wall. Most of the lining materials are PTFE plastics and ceramics that are resistant to corrosion, high temperature and wear.
Converter: The induced potential signal generated by the liquid flow is very weak and is greatly affected by various interference factors. The function of the converter is to amplify and convert the induced potential signal into a unified standard signal and suppress the main interference signal. Its task is to amplify the induced potential signal Ex detected by the electrode into a unified standard DC signal.
Vortex flowmeter installation requirements for straight pipe sections:
It is very important that the vortex flowmeter installation meets the requirements for straight pipe sections. Its detailed requirements are as follows:
The flowmeter has certain requirements on the upstream and downstream straight pipe sections at the installation point, otherwise it will affect the measurement accuracy.
If there is a tapered pipe upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 15D (D is the pipe diameter) upstream of the flowmeter, and a straight pipe section of not less than 5D in the downstream.
If there is a diverging pipe upstream of the installation point of the flowmeter, the upstream of the flowmeter shall have a straight pipe section of not less than 18D (D is the pipe diameter), and the downstream shall have a straight pipe section of not less than 5D.
If there is a 90° elbow or down joint upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 20D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
If there is a 90° elbow on the same plane upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 25D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
The flow regulating valve or pressure regulating valve should be installed as far as possible downstream of the flowmeter 5D. If it must be installed upstream of the flowmeter, the upstream of the flowmeter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D. .
If there is a piston type or plunger type pump in the upstream of the flow meter, a piston type or a Roots type fan and a compressor, the upstream of the flow meter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D.
Special attention: If the valve is installed near the upstream of the installation point of the vortex flowmeter, the valve is continuously opened and closed, which has a great influence on the service life of the flowmeter, and it is very easy to cause permanent damage to the flowmeter. The flowmeter should be avoided to be installed on the very long pipelines in overhead. After a long time, the leakage of the flowmeter can easily cause the leakage of the flowmeter to the flange. If it has to be installed, it must be in the upstream and downstream of the flowmeter. Pipe fastening devices are provided separately.
Vortex flowmeter verification detection method
Standard table method
The vortex flowmeter is used as a standard device in series with the flowmeter to be inspected, and can be verified by static method or dynamic method. By comparing the readings of the two flow meters, the error of the vortex flowmeter to be tested is obtained.
Standard table flow meter standard device features:
1. Standard table method is suitable for measuring various fluids (including liquids and gases), and also for liquids of various viscosities.
2. The indication value is checked. The flow meter used as the standard meter is installed in series with the flowmeter to be tested in the same closed pipeline system. Generally, there is no time measurement error.
3. As a standard table, the vortex flowmeter can be the same as or different from the flowmeter to be tested.
4. When the flow meter is verified by the standard meter method, the airflow or liquid flow can be not cut off, so it is suitable for online verification, and is also suitable for the measurement standard for the closed pipeline. 5, the standard table method is easy to achieve automation, sealed and safe, does not pollute the environment.
6. Small size, light weight, simple device structure, convenient operation, easy transportation and installation, and low cost.
7. Standard meter flowmeters have low accuracy and poor stability, and often need to be compared regularly or irregularly to monitor their metering performance. The standard table has a shorter verification period.