Because all kinds of ultrasonic flowmeters can be installed outside the pipe, non-contact flow measurement, the cost of the instrument is basically independent of the size of the pipe to be tested, while other types of flowmeters increase with the increase in caliber, so the cost is increased. The flowmeter is superior to the other functions of the same type of flowmeter. It is considered to be a good large-diameter flow measuring instrument. The Doppler ultrasonic flowmeter can measure the flow of two-phase medium, so it can be used for the measurement of dirty sewage such as sewers and sewage. In power plants, the use of portable ultrasonic flowmeters to measure large pipe diameters such as turbine water inflow and turbine circulating water is much more convenient than in the past. Ultrasonic flow juice can also be used for gas measurement. Pipe diameters range from 2cm to 5m, from a few meters wide open channels, culverts to 500m wide rivers.
In addition, the accuracy of the flow measurement of the ultrasonic measuring instrument is almost independent of the temperature, pressure, viscosity, density and other parameters of the measured fluid, and can be made into non-contact and portable measuring instruments, so it can solve the problem that other types of instruments are difficult to measure. Flow measurement problems for corrosive, non-conductive, radioactive, and flammable and explosive media. In addition, in view of the non-contact measurement characteristics, coupled with reasonable electronic circuits, one instrument can adapt to a variety of pipe diameter measurements and a variety of flow range measurements. The adaptability of ultrasonic flowmeters is also unmatched by other instruments. Ultrasonic flowmeters have some of the above advantages, so it has received more and more attention and has been developed into a series of products and generalization. It has been made into standard, high-temperature, explosion-proof and wet instruments of different channels to adapt to different media. Flow measurement for occasions and different pipeline conditions.
Vortex flowmeter selection
(1) Selection of vortex flow transmitter
In the measurement of saturated steam, VA type piezoelectric vortex flow transmitter is adopted. Because of the wide range of vortex flowmeter, in practical applications, it is generally considered that the flow of measuring saturated steam should not be lower than that of vortex flowmeter. The lower limit, that is to say, the fluid flow rate must not be less than 5 m/s. According to the size of the steam, the vortex flow transmitters with different calibers are selected, and the caliber of the transmitter cannot be selected by the existing process pipe diameter.
(2) Selection of pressure compensation pressure transmitter
Since the saturated steam line is long and the pressure fluctuates greatly, pressure compensation must be adopted. Considering the corresponding relationship of pressure, temperature and density, only pressure compensation can be used in the measurement, because the saturated steam pressure of Mingtong Company is 0.3-0.7MPa. Range, the range of pressure transmitter can be selected 1MPa.
(3) Display instrument selection
Display instrument intelligent flow display instrument with voltage regulation compensation, instantaneous flow display and cumulative flow accumulation function.
Vortex flowmeter installation requirements for straight pipe sections:
It is very important that the vortex flowmeter installation meets the requirements for straight pipe sections. Its detailed requirements are as follows:
The flowmeter has certain requirements on the upstream and downstream straight pipe sections at the installation point, otherwise it will affect the measurement accuracy.
If there is a tapered pipe upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 15D (D is the pipe diameter) upstream of the flowmeter, and a straight pipe section of not less than 5D in the downstream.
If there is a diverging pipe upstream of the installation point of the flowmeter, the upstream of the flowmeter shall have a straight pipe section of not less than 18D (D is the pipe diameter), and the downstream shall have a straight pipe section of not less than 5D.
If there is a 90° elbow or down joint upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 20D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
If there is a 90° elbow on the same plane upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 25D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
The flow regulating valve or pressure regulating valve should be installed as far as possible downstream of the flowmeter 5D. If it must be installed upstream of the flowmeter, the upstream of the flowmeter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D. .
If there is a piston type or plunger type pump in the upstream of the flow meter, a piston type or a Roots type fan and a compressor, the upstream of the flow meter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D.
Special attention: If the valve is installed near the upstream of the installation point of the vortex flowmeter, the valve is continuously opened and closed, which has a great influence on the service life of the flowmeter, and it is very easy to cause permanent damage to the flowmeter. The flowmeter should be avoided to be installed on the very long pipelines in overhead. After a long time, the leakage of the flowmeter can easily cause the leakage of the flowmeter to the flange. If it has to be installed, it must be in the upstream and downstream of the flowmeter. Pipe fastening devices are provided separately.