Instruments that measure fluid flow are collectively referred to as flow meters or flow meters. The flowmeter is one of the important instruments in industrial measurement. With the development of industrial production, the accuracy and range of flow measurement requirements are getting higher and higher, and the flow measurement technology is changing with each passing day. Various types of flow meters have been introduced to suit various applications. More than 100 flow meters have been put into use. From different perspectives, flow meters have different classification methods. There are two commonly used classification methods. One is to classify according to the measurement principle adopted by the flowmeter: the second is to classify according to the structural principle of the flowmeter.
Sort by measurement principle
a. Mechanical principle:
Instruments belonging to such principles have differential pressure type, rotor type using Bernoulli's theorem;
Impulse type using the momentum theorem, movable tube type;
Direct mass equation using Newton's second law;
a target using the principle of fluid momentum;
Turbine using the angular momentum theorem;
Vortex type using vortex principle of fluid oscillation;
Use the total static pressure difference of the pitot tube type as well as volumetric and sputum, trough and so on.
b. Electrical principle:
Electromagnetic,
Differential capacitor type,
Inductive,
Strain resistance type, etc.
c. Acoustic principle:
Ultrasonic.
d. Thermal principles:
Thermal type,
Direct calorimetry,
Indirect calorimetry and so on.
The lining material should be selected according to the corrosiveness, wear and temperature of the tested medium:
First, natural rubber (soft rubber)
1, better elasticity, wear resistance and tearing force
2, resistant to general weak acid, weak alkali corrosion
3. Water and sewage
Second, acid-resistant rubber (hard rubber)
It can withstand the corrosion of hydrochloric acid, acetic acid, oxalic acid, ammonia water, phosphoric acid and 50% sulfuric acid, sodium hydroxide and potassium hydroxide at normal temperature, but it is not resistant to corrosion by strong oxidants.
It can measure general acid, alkali and salt solutions.
Third, neoprene (Neoprene)
1, excellent elasticity, high tearing force, good wear resistance
2, resistant to general low concentration of acid and alkali, salt solution corrosion, but not resistant to oxidation of the medium, and temperature requirements <80 ° C;
It can measure water, sewage, mud and pulp.
Fourth, Polyurethane (Polyurethane)
1, excellent wear resistance
2, poor acid and alkali resistance, temperature requirements <40 ° C
Measure medium-strongly worn coal slurry, mud and slurry
Five, polytetrafluoroethylene (PTFE)
1. Boiling hydrochloric acid, sulfuric acid, nitric acid, aqua regia, concentrated alkali and various organic solvents
2, good wear resistance, poor bonding performance, temperature requirements -80 ~ +180 ° C;
Measuring concentration, concentrated alkali strong corrosive solution and sanitary medium
Daily maintenance (1)
Only need to periodically check the instrument, check the environment around the instrument, remove the dirt, ensure that no water and other substances are inspected, check whether the wiring is good, check whether there is a new strong electromagnetic field device near the instrument or a new installed wire across the instrument. If the measuring medium is easy to contaminate the electrode or precipitate or scale in the measuring tube wall, it should be regularly cleaned and cleaned.
Folding fault finding
After the flowmeter starts to be put into operation or is put into operation for a period of time, it is found that the instrument is not working properly. First, check the external condition of the flowmeter, such as whether the power supply is good, whether the pipeline is leaking or is in a state of non-full pipe, whether there is air bubble in the pipe, whether the signal cable is Damage, converter output signal (ie rear position meter input loop) is open circuit. Remember to blindly disassemble the flowmeter.
Sensor check
Test equipment: one 500MΩ insulation resistance tester, one multimeter.
Test steps:
(1) When the pipeline is filled with medium, measure the resistance between terminals A, B and C with a multimeter. The resistance between A-C and B-C should be equal. If the difference is more than 1 time, there may be leakage of the electrode, condensation on the outer wall of the measuring tube or the junction box.
(2) In the case of lining drying, measure the insulation resistance between A-C and B-C with MΩ meter (should be greater than 200MΩ). Then use a multimeter to measure the resistance of the two electrodes in terminals A and B and the measuring tube (should be in short-circuit communication). If the insulation resistance is small, indicating that the electrode is leaking, the entire flowmeter should be returned to the factory for repair. If the insulation is reduced but there is still more than 50 MΩ and the inspection result of step (1) is normal, the outer wall of the measuring tube may be damp, and the inside of the outer casing may be dried by a hot air blower.
(3) Use a multimeter to measure the resistance between X and Y. If it exceeds 200 Ω, the excitation coil and its lead wire may be open or poorly connected. Remove the terminal block check.
(4) Check the insulation resistance between X, Y and C, which should be above 200 MΩ. If it is lowered, dry the inside of the casing with hot air. In actual operation, the decrease in coil insulation will result in increased measurement error and unstable instrument output signal.
(5) If it is determined that the sensor is faulty, please contact the manufacturer of the electromagnetic flowmeter. The general site cannot be solved and needs to be repaired by the manufacturer.