Electromagnetic flowmeter features
Using intelligent judgment, the measurement correction setting is not used, and the air traffic control alarm and electrode detection application are more convenient;
Advanced "rough error handling" technology, which can remove fluids such as slurry to measure sharp disturbances, reduce output runout, maintain high precision measurement and make output more stable;
With a fluid density setting, it can display mass flow;
Constant current excitation current range, 125mA, 250mA optional, can be used with different manufacturers, different types of electromagnetic flow sensors;
Control function with remote reset of the totalizer, with contact signal input for starting and stopping accumulation, suitable for total inspection and batch processing applications;
With self-test and self-diagnosis function;
Advanced non-volatile memory for higher circuit reliability and effective protection of setup and measurement parameters;
The meter can be equipped with an unpowered clock and memory for recording the power down time, power-on time and power-down time;
The meter has an optional hour recording function that can store flow and electrode resistance measurements for more than 30 days.
The new keyboard processing method avoids the keyboard operation affecting the measurement, and can enter and return the operation menu to make the parameter setting more convenient;
The total display uses 10-bit decimal 9999999999 full-value carry, which solves the practice of double-word full value 4294967285 (hexadecimal FFFF) carry-in habit;
With wireless transmission, the mesh network is organized by the wireless HART protocol.
Principle analysis of various types of flowmeters
(1) Principles of mechanics: Instruments belonging to such principles have differential pressure and rotor type using Bernoulli's theorem; impulse type and movable tube type using momentum theorem; direct mass type using Newton's second law; The target type of the momentum principle; the turbine type using the angular momentum theorem; the vortex type using the principle of fluid oscillation, the vortex type; the pitot tube type using the total static pressure difference; the volumetric type, the enthalpy, the trough type, and the like.
(2) Electrical principle: The instruments used for such principles are electromagnetic, differential capacitive, inductive, strain resistant, etc.
(3) Acoustic principle: Ultrasonic type, acoustic type (shock wave type), etc. are used for flow measurement using the acoustic principle.
(4) Thermal principle: The heat, direct thermal, indirect calorimetry, etc., which measure the flow using the thermal principle.
(5) Optical principle: laser type, photoelectric type, etc. are instruments belonging to such principles.
(6) Originally based on physical principles: nuclear magnetic resonance, nuclear radiation, etc. are instruments of this type.
(7) Other principles: Marking principle (trace principle, NMR principle), related principles, etc.
Daily maintenance (1)
Only need to periodically check the instrument, check the environment around the instrument, remove the dirt, ensure that no water and other substances are inspected, check whether the wiring is good, check whether there is a new strong electromagnetic field device near the instrument or a new installed wire across the instrument. If the measuring medium is easy to contaminate the electrode or precipitate or scale in the measuring tube wall, it should be regularly cleaned and cleaned.
Folding fault finding
After the flowmeter starts to be put into operation or is put into operation for a period of time, it is found that the instrument is not working properly. First, check the external condition of the flowmeter, such as whether the power supply is good, whether the pipeline is leaking or is in a state of non-full pipe, whether there is air bubble in the pipe, whether the signal cable is Damage, converter output signal (ie rear position meter input loop) is open circuit. Remember to blindly disassemble the flowmeter.
Sensor check
Test equipment: one 500MΩ insulation resistance tester, one multimeter.
Test steps:
(1) When the pipeline is filled with medium, measure the resistance between terminals A, B and C with a multimeter. The resistance between A-C and B-C should be equal. If the difference is more than 1 time, there may be leakage of the electrode, condensation on the outer wall of the measuring tube or the junction box.
(2) In the case of lining drying, measure the insulation resistance between A-C and B-C with MΩ meter (should be greater than 200MΩ). Then use a multimeter to measure the resistance of the two electrodes in terminals A and B and the measuring tube (should be in short-circuit communication). If the insulation resistance is small, indicating that the electrode is leaking, the entire flowmeter should be returned to the factory for repair. If the insulation is reduced but there is still more than 50 MΩ and the inspection result of step (1) is normal, the outer wall of the measuring tube may be damp, and the inside of the outer casing may be dried by a hot air blower.
(3) Use a multimeter to measure the resistance between X and Y. If it exceeds 200 Ω, the excitation coil and its lead wire may be open or poorly connected. Remove the terminal block check.
(4) Check the insulation resistance between X, Y and C, which should be above 200 MΩ. If it is lowered, dry the inside of the casing with hot air. In actual operation, the decrease in coil insulation will result in increased measurement error and unstable instrument output signal.
(5) If it is determined that the sensor is faulty, please contact the manufacturer of the electromagnetic flowmeter. The general site cannot be solved and needs to be repaired by the manufacturer.