Choice of protection level
The protection level of the electromagnetic flowmeter should be selected according to the actual situation. If the sensor is required to be installed below the ground and is often flooded, IP68 should be selected. If the sensor is installed above the ground, IP65 and IP67 should be selected. In any case, the display area of ??the electromagnetic flowmeter cannot be used with water or enter the water, which may cause damage to the electromagnetic flowmeter. As a chemical company, the workshop produces high humidity, but IP65 (IP65 is a water-proof type. The electromagnetic flowmeter sensor housing allows the faucet to spray water from the sensor in any direction of the sensor of the electromagnetic flowmeter. The pressure of the water spray is 30Kpa, the water output It is 12.5L/S and the distance is 3 meters.) The electromagnetic flowmeter of the protection grade fully meets the requirements of on-site measurement.
Choice of connection method
Electromagnetic flowmeters have threaded connections, flanged connections, clamps, etc. In the chemical industry, flange-connected electromagnetic flowmeters are generally used. The selection must be consistent with the process-flange engineering pressure and standards.
Conclusion, with the maturity of the domestic instrument industry, chemical companies such as lithium carbonate, boric acid and potash will also enter the market in line with the domestic market. As an important industrial flow measuring instrument, electromagnetic flowmeter should play its role in DCS control. The right selection is especially important to provide accurate measurement data, reduce labor costs and increase production efficiency.
The structure of the electromagnetic flowmeter is mainly composed of a magnetic circuit system, a measuring conduit, an electrode, a casing, a lining, and a converter.
Magnetic circuit system: its role is to produce a uniform DC or AC magnetic field. The DC magnetic circuit is realized by a permanent magnet, which has the advantages of simple structure and less interference by the alternating magnetic field, but it is easy to polarize the electrolyte liquid in the measuring duct, so that the positive electrode is surrounded by negative ions, and the negative electrode is positive ion Surrounding, that is, the polarization phenomenon of the electrode, and causing an increase in internal resistance between the two electrodes, thus seriously affecting the normal operation of the meter. When the diameter of the pipe is large, the permanent magnets are correspondingly large, bulky and uneconomical, so the electromagnetic flowmeter generally adopts an alternating magnetic field and is generated by the excitation of a 50HZ power frequency power source.
Measuring catheter: its function is to let the conductive liquid to be tested pass. In order to make the magnetic flux diverted or short-circuited when the magnetic flux passes through the measuring catheter, the measuring catheter must be made of non-magnetic, low electrical conductivity, low thermal conductivity and mechanical strength. Non-magnetic stainless steel, FRP, high strength can be used. Plastic, aluminum, etc.
Ultrasonic flowmeter features
The unique signal digitization processing technology makes the meter measurement signal more stable, anti-interference ability and more accurate measurement.
No mechanical transmission parts are not easily damaged, maintenance-free and have a long service life.
The circuit is more optimized, with high integration, low power consumption and high reliability.
Intelligent standard signal output, friendly man-machine interface, multiple secondary signal output, for you to choose.
Pipe-section small pipe diameter measurement is economical and convenient, and the measurement accuracy is high.
Detailed installation of ultrasonic flowmeter
Ultrasonic flowmeters should be aware of the site prior to installation, including:
1. What is the distance from the host at the installation of the sensor;
2. Pipe material, pipe wall thickness and pipe diameter;
3. Years of pipeline;
4. The type of fluid, whether it contains impurities, bubbles and whether it is full;
5. Fluid temperature;
6. Whether there is interference source at the installation site (such as frequency conversion, strong magnetic field, etc.);
7. Four seasons temperature at the host place;
8. Whether the power supply voltage used is stable;
9. Do you need remote signals and types;
According to the site conditions provided above, the manufacturer can configure the site conditions and, if necessary, special models.