Electromagnetic flowmeter features
Using intelligent judgment, the measurement correction setting is not used, and the air traffic control alarm and electrode detection application are more convenient;
Advanced "rough error handling" technology, which can remove fluids such as slurry to measure sharp disturbances, reduce output runout, maintain high precision measurement and make output more stable;
With a fluid density setting, it can display mass flow;
Constant current excitation current range, 125mA, 250mA optional, can be used with different manufacturers, different types of electromagnetic flow sensors;
Control function with remote reset of the totalizer, with contact signal input for starting and stopping accumulation, suitable for total inspection and batch processing applications;
With self-test and self-diagnosis function;
Advanced non-volatile memory for higher circuit reliability and effective protection of setup and measurement parameters;
The meter can be equipped with an unpowered clock and memory for recording the power down time, power-on time and power-down time;
The meter has an optional hour recording function that can store flow and electrode resistance measurements for more than 30 days.
The new keyboard processing method avoids the keyboard operation affecting the measurement, and can enter and return the operation menu to make the parameter setting more convenient;
The total display uses 10-bit decimal 9999999999 full-value carry, which solves the practice of double-word full value 4294967285 (hexadecimal FFFF) carry-in habit;
With wireless transmission, the mesh network is organized by the wireless HART protocol.
The structure of the electromagnetic flowmeter is mainly composed of a magnetic circuit system, a measuring conduit, an electrode, a casing, a lining, and a converter.
Magnetic circuit system: its role is to produce a uniform DC or AC magnetic field. The DC magnetic circuit is realized by a permanent magnet, which has the advantages of simple structure and less interference by the alternating magnetic field, but it is easy to polarize the electrolyte liquid in the measuring duct, so that the positive electrode is surrounded by negative ions, and the negative electrode is positive ion Surrounding, that is, the polarization phenomenon of the electrode, and causing an increase in internal resistance between the two electrodes, thus seriously affecting the normal operation of the meter. When the diameter of the pipe is large, the permanent magnets are correspondingly large, bulky and uneconomical, so the electromagnetic flowmeter generally adopts an alternating magnetic field and is generated by the excitation of a 50HZ power frequency power source.
Measuring catheter: its function is to let the conductive liquid to be tested pass. In order to make the magnetic flux diverted or short-circuited when the magnetic flux passes through the measuring catheter, the measuring catheter must be made of non-magnetic, low electrical conductivity, low thermal conductivity and mechanical strength. Non-magnetic stainless steel, FRP, high strength can be used. Plastic, aluminum, etc.
Accuracy class and function According to the measurement requirements and the use occasions, the instrument accuracy level is selected to achieve economical efficiency. For example, in the case of trade settlement, product handover and energy measurement, the accuracy level should be higher, such as 1.0, 0.5, or higher; for process control, select different accuracy levels according to control requirements; It is to detect the process flow, no need to do precise control and measurement, you can choose a lower accuracy level, such as 1.5, 2.5, or even 4.0, then you can use a low-cost plug-in electromagnetic flowmeter.
Measuring medium flow rate, meter range and diameter When measuring general medium, the full flow of electromagnetic flowmeter can be selected within the range of 0.5-12m/s of measuring medium flow, and the range is wider. The meter specification (caliber) is not necessarily the same as the process pipeline. It should be determined whether the measured flow range is within the flow rate range. That is, when the pipeline flow rate is too low to meet the flow meter requirements or the measurement accuracy cannot be guaranteed at this flow rate, It is necessary to reduce the gauge diameter, thereby increasing the flow rate inside the tube and obtaining satisfactory measurement results.
Try to avoid ferromagnetic objects and equipment with strong electromagnetic fields to prevent the magnetic field from affecting the working magnetic field and flow signal of the sensor.
Should be installed in the dry and ventilated place, to avoid sun and rain, the ambient temperature should be -20 ~ +60 ° C, relative humidity is less than 85%.
There should be ample space around the flowmeter for easy testing and maintenance.