Ultrasonic flowmeter uses the electronic principle to measure the flow meter. Although it has its own verification procedure, because it has the same usage management mode as the tap water industry measurement, it puts its performance requirements, measurement accuracy, verification cycle, etc. into the cold water meter. In the meantime, it has become more standardized. Since then, the use of large-caliber ultrasonic flowmeters has normative documents in the water industry.
Ultrasonic flowmeter (ultrasonic water meter) Because the measurement principle is different from electromagnetic water meter, its accuracy is different. How to choose an ultrasonic flowmeter with superior performance and precision:
1. The user flow range is used to determine the type, diameter, temperature, medium, etc. of the ultrasonic flowmeter, especially considering the common flow rate and the starting flow rate. The purpose is to ensure the water supply quantity, accurately measure and reduce the leakage rate. When using the water meter, the user's water meter Commonly used traffic generally cannot exceed the common flow value specified by the product.
2, different flow rate to determine the diameter of the flow meter can meet the measurement range.
3. Different user environments.
4. Also consider the working pressure, the structure of the flow certificate, the form of the converter (whether bidirectional flow, current, pulse, communication interface, data storage) and the length of the connecting cable.
5. The performance and accuracy of the ultrasonic flowmeter are selected.
6, users can learn more about the peers who are already using the ultrasonic flowmeter, to see the effect of their use, the accuracy of the measurement.
At present, industrial flow measurement generally has problems of large diameter, large flow, small diameter, small flow, high temperature liquid, and gas measurement. This is because the general flowmeter will bring manufacturing and transportation as the diameter of the measuring pipe increases. The difficulty of the above, the advantages of increased cost, increased energy loss, and inconvenient installation, ultrasonic flowmeters can be avoided. The German FLEXIM ultrasonic flowmeter measures diameters from 6mm to 6500 mm, from a few meters wide open channels, culverts to 500m wide rivers.
1. Measurements are not affected by changes in fluid density, viscosity, temperature, pressure, and conductivity;
2. There is no obstructed flow component in the measuring tube, no pressure loss, and the requirements of the straight pipe section are low. Unique adaptability to slurry measurement;
3. Reasonable selection of sensor lining and electrode materials, that is, good corrosion resistance and wear resistance;
4. The converter adopts novel excitation mode with low power consumption, stable zero point and high precision. The flow range can reach 150:1;
5. The converter can be integrated with the sensor or separated;
6. The converter adopts 16-bit high-performance microprocessor, 2x16LCD display, convenient parameter setting and reliable programming;
7. The flowmeter is a two-way measuring system with three totalizers: positive total, reverse total and total difference; can display positive and negative flow, and has multiple outputs: current, pulse, digital communication , HART;
8, the converter uses surface mount technology (SMT), with self-test and self-diagnosis function;
9. Measurement accuracy is not affected by changes in fluid density, viscosity, temperature, pressure and conductivity. The sensor induced voltage signal has a linear relationship with the average flow velocity, so the measurement accuracy is high.
10. There is no obstruction in the measuring pipe, so there is no additional pressure loss; there is no moving parts in the measuring pipe, so the life of the sensor is extremely long.
11. Since the induced voltage signal is formed in the entire space filled with the magnetic field and is the average value on the pipeline surface, the sensor requires a short straight pipe section and a pipe diameter of 5 times.
12. The converter adopts the latest and most advanced single-chip microcomputer (MCU) and surface mount technology (SMT) in the world. It has reliable performance, high precision, low power consumption, stable zero point and convenient parameter setting. Click on the Chinese display LCD to display the cumulative flow, instantaneous flow rate, flow rate, flow percentage, and more.
13, two-way measurement system, can measure forward flow, reverse flow. Special production technology and high-quality materials ensure that the performance of the product remains stable for a long time.
The structure of the electromagnetic flowmeter is mainly composed of a magnetic circuit system, a measuring conduit, an electrode, a casing, a lining, and a converter.
Magnetic circuit system: its role is to produce a uniform DC or AC magnetic field. The DC magnetic circuit is realized by a permanent magnet, which has the advantages of simple structure and less interference by the alternating magnetic field, but it is easy to polarize the electrolyte liquid in the measuring duct, so that the positive electrode is surrounded by negative ions, and the negative electrode is positive ion Surrounding, that is, the polarization phenomenon of the electrode, and causing an increase in internal resistance between the two electrodes, thus seriously affecting the normal operation of the meter. When the diameter of the pipe is large, the permanent magnets are correspondingly large, bulky and uneconomical, so the electromagnetic flowmeter generally adopts an alternating magnetic field and is generated by the excitation of a 50HZ power frequency power source.
Measuring catheter: its function is to let the conductive liquid to be tested pass. In order to make the magnetic flux diverted or short-circuited when the magnetic flux passes through the measuring catheter, the measuring catheter must be made of non-magnetic, low electrical conductivity, low thermal conductivity and mechanical strength. Non-magnetic stainless steel, FRP, high strength can be used. Plastic, aluminum, etc.